• Что можно приготовить из кальмаров: быстро и вкусно

    Движение крыльев у насекомых - результат работы сложного механизма и определяется, с одной стороны, особенностью сочленения крыла с туловищем, а с другой - действием особых крыловых мышц. В общих чертах основной механизм движения крыльев представляется следующим образом. Само крыло - это двуплечий рычаг с неодинаковой длиной плеч. С тергитом и боковой пластинкой крыло соединяется тонкими и гибкими мембранами. Чуть отступя от места этого соединения, крыло опирается на небольшой, имеющий вид столбика вырост боковой пластинки, который и является точкой опоры крылового рычага.

    Расположенные в грудных сегментах мощные продольные и дорзовентральные мышцы могут опускать или приподнимать тергит. При опускании последний давит на короткое плечо крыла и влечет его за собой вниз. В результате длинное плечо, т. е. вся несущая плоскость крыла, движется вверх. Подъем тергита приводит к опусканию крыловой пластинки. Небольшие мышцы, прикрепленные непосредственно к крылу, способны поворачивать его вдоль продольной оси, при этом изменяется угол атаки. Во время полета свободный конец крыла движется по довольно сложной траектории. При опускании крыловая пластинка расположена горизонтально и движется вниз и вперед: возникает подъемная сила, удерживающая насекомое в воздухе. При движении вверх и назад крыло располагается вертикально, что создает пропеллирующий эффект.

    Количество ударов крыла в 1 с сильно варьирует у разных насекомых: от 5-10 (у крупных дневных бабочек) до 500-600 (многие комары); у очень мелких комаров-мокрецов эта цифра достигает 1000 колебаний в 1 с. У различных представителей насекомых передние и задние крылья могут быть развиты в разной степени. Только у более примитивных насекомых (стрекозы) обе пары крыльев развиты более или менее одинаково, хотя и разнятся по форме. У жуков (отр. Жесткокрылые - Coleoptera ) передние крылья изменяются в толстые и твердые надкрылья - элитры, которые почти не участвуют в полете и в основном служат для защиты спинной стороны тела. Настоящими же крыльями являются лишь задние крылья, которые в покоящемся состоянии спрятаны под надкрыльями. У представителей отряда клопов твердеет лишь основная половина передней пары крыльев, вследствие чего эту группу насекомых нередко называют отрядом Полужесткокрылых . У некоторых насекомых, а именно у целого отряда двукрылых, развита лишь передняя пара крыльев, тогда как от задней остаются лишь рудименты в виде так называемых жужжалец.


    Вопрос о происхождении крыльев еще не вполне разрешен. В настоящее время одной из наиболее обоснованных представляется "паранотальная" гипотеза, согласно которой крылья возникли из простых неподвижных боковых выростов кожи - паранотумов. Такие выросты встречаются у многих членистоногих (трилобиты, ракообразные), у многих ископаемых насекомых и у некоторых современных форм (личинки термитов, некоторые богомолы, тараканы и т. д.). Переходом от ползающего к летающему послужил, быть может, лазающий образ жизни на деревьях, при котором насекомые, вероятно, часто делали прыжки с ветки на ветку, что способствовало дальнейшему развитию боковых выростов груди, которые вначале выполняли функции несущих плоскостей при парашютировании или планирующем полете. Дальнейшая дифференцировка и отчленение выростов от самого тела привели к выработке настоящих крыльев, обеспечивающих активный пропеллирующий полет.

    Брюшко - последний отдел тела насекомых. Количество сегментов, входящих в его состав, варьирует у разных представителей класса. Здесь, как и в других группах членистоногих, выявляется четкая закономерность: чем ниже в эволюционном отношении стоят те или иные представители, тем более полным набором сегментов они обладают. И действительно, максимальное число брюшных сегментов мы находим у самых низших скрыточелюстных (отр. Protura ), брюшко которых состоит из 11 сегментов и заканчивается отчетливо различимым тельсоном. У всех остальных насекомых часть сегментов редуцируется (обычно один или несколько последних, а иногда и самый первый), так что общее число сегментов может сокращаться до 10, а у высших форм (некоторые перепончатокрылые и двукрылые) до 4-5.


    Брюшко обычно лишено конечностей. Однако вследствие происхождения насекомых от форм, обладавших ножками на протяжении всего гомономно расчлененного тела, нередко сохраняются на брюшке рудименты конечностей или же конечности, изменившие свою первоначальную функцию. Так, у отряда Protura , низших представителей бескрылых насекомых, имеются маленькие конечности на трех передних члениках брюшка. Сохраняются рудименты брюшных конечностей и у открыто-челюстных. У тизанур на всех сегментах брюшка имеются особые придатки - грифельки, на которых, как на полозьях, при движении насекомого брюшко скользит по субстрату. Одна пара грифельков на заднем конце тела сохраняется и у тараканов. Очень широко распространены, особенно у более примитивных форм (тараканы, саранчовые и т. п.), церки - парные придатки последнего сегмента брюшка, также являющиеся видоизмененными конечностями. По-видимому, сходное происхождение имеют и яйцеклады, встречающиеся у многих насекомых и состоящие из трех пар вытянутых створок.

    Покровы насекомых , как и всех остальных членистоногих, состоят из трех основных элементов - кутикулы, гиподермы и базальной мембраны. Кутикула выделяется клетками гиподермы, которая у скрыточелюстных насекомых часто превращается в синцитий. Кутикула насекомых трехслойна. В отличие от таковой ракообразных она несет наружный слой, содержащий липопротеинозые комплексы и препятствующий испарению воды из организма. Насекомые - сухопутные животные. Интересно отметить, что у водных и почвенных форм, обитающих в атмосфере, насыщенной парами воды, наружный слой или не выражен совсем, или развит очень слабо.

    Механическую прочность кутикуле придают белки, задубленные фенолами. Они инкрустируют средний, основной слой.

    На поверхности кутикулы находятся разнообразные, подвижно сочлененные с поверхностью тела выросты - тонкие волоски, чешуйки, щетинки. Каждое такое образование обыкновенно есть продукт выделения одной крупной гиподермальной клетки. Многообразие форм и функций волосков необычайно, они могут быть чувствительными, покровными, ядовитыми.


    Окраска насекомых в большинстве случаев зависит от присутствия в гиподерме или в кутикуле особых красящих веществ - пигментов. Металлический блеск многих насекомых относится к числу так называемых структурных окрасок и имеет другую природу. Особенности строения кутикулы обусловливают появление ряда оптических эффектов, которые основаны па сложном преломлении и отражении световых лучей. Покровы насекомых имеют разнообразного значения железы; они бывают одноклеточными и многоклеточными. Таковы вонючие железы (на груди клопов), защитные железы (у многих гусениц) и т. д. Наиболее часто встречаются линочные железы. Их секрет, выделяемый во время линьки, растворяет внутренний слой старой кутикулы, не затрагивая вновь образующихся кутикулярных слоев. Особыми восковыми железами у пчел, червецов и некоторых других насекомых выделяется воск.

    Мышечная система насекомых отличается большой сложностью и высокой степенью дифференциации и специализации отдельных ее элементов. Количество отдельных мышечных пучков часто достигает 1,5 - 2 тыс. Скелетные мышцы, обеспечивающие подвижность организма и отдельных его частей по отношению друг к другу, как правило, прикрепляются к внутренним поверхностям кутикулярных склеритов (тергитам, стернитам, стенкам конечностей). По гистологическому строению почти все мышцы насекомых поперечнополосатые.

    Мышцы насекомых (в первую очередь это относится к крыловым мышцам высших групп насекомых: перепончатокрылым, двукрылым и т. п.) способны к необычайной частоте сокращений - до 1000 раз в секунду. Это связано с явлением умножения ответа на раздражение, когда на один нервный импульс мышца отвечает несколькими сокращениями.

    Богато разветвленная сеть трахейной дыхательной системы снабжает кислородом каждый мышечный пучок, что наряду с заметным повышением температуры тела насекомых при полете (за счет тепловой энергий, выделяемой работающими мышцами) обеспечивает высокую интенсивность обменных процессов, протекающих в мышечных клетках.

    Пищеварительная система начинается небольшой ротовой полостью, стенки которой образуются верхней губой и совокупностью ротовых конечностей. У форм, питающихся жидкой пищей, она, по существу, заменена каналами, образующимися в хоботке и служащими для засасывания пищи и проведения слюны - секрета специальных слюнных желез. Стенки верхней части ротовой полости и следующей за ней трубчатой глотки соединяются со стенками головной капсулы с помощью мощных мышечных пучков. Совокупность этих пучков образует своеобразный мышечный насос, обеспечивающий продвижение пищи в пищеварительную систему.

    В заднюю часть ротовой полости, как правило, около основания нижней губы (максиллы II) открываются протоки одной или нескольких (до 3) пар слюнных желез. Содержащиеся в слюне ферменты обеспечивают начальные этапы процессов пищеварения. У кровососущих насекомых (муха цеце, некоторые виды комаров и т. п.) слюна часто содержит вещества, препятствующие свертыванию крови - антикоагулянты. В некоторых случаях слюнные железы резко меняют свою функцию. У гусениц бабочек, например, они превращаются в прядильные, которые вместо слюны выделяют шелковистую нить, служащую для изготовления кокона или для других целей.

    Пищеварительный канал насекомых, начинающийся глоткой, состоит из трех отделов: передней, средней и задней кишок.

    Передняя кишка может быть дифференцирована на несколько отличающихся по функциям и строению частей. Глотка переходит в пищевод, имеющий вид узкой и длинной трубки. Задний конец пищевода часто расширяется в зоб, особенно развитый у насекомых, питающихся жидкой пищей. У некоторых хищных жуков, прямокрылых, тараканов и т. д. за зобом помещается еще одно небольшое расширение передней кишки - жевательный желудок. Кутикула, выстилающая всю переднюю кишку, в жевательном желудке образует многочисленные твердые выросты в виде бугров, зубцов и т. п., способствующих дополнительному перетиранию пищи.

    Далее следует средняя кишка, в которой происходит переваривание и всасывание пищи; она имеет вид цилиндрической трубки. При начале средней кишки в нее нередко впадает несколько слепых выпячиваний кишечника, или пилорических придатков, служащий в основное для увеличения всасывающей поверхности кишечника. Стенки средней кишки часто образуют складки, или крипты. Обыкновенно эпителием средней кишки выделяется вокруг содержимого кишки непрерывная тонкая оболочка, так называемая перитрофическая мембрана.

    В средней кишке происходит окончательное переваривание и усвоение пищевых веществ.

    Правило рычага лежит в основе действия различного рода инструментов и устройств, применяемых в технике и быту там, где требуется выигрыш в силе или в пути.

    Выигрыш в силе мы имеем при работе с ножницами. Ножницы – это рычаг (рис. 155), ось вращения которого проходит через винт, соединяющий обе половины ножниц. Действующей силой F1 является мускульная сила руки человека, сжимающего ножницы; противодействующей силой F2 - сопротивление того материала, который режут ножницами. В зависимости от назначения ножниц их устройство бывает различным. Конторские ножницы, предназначенные для резки бумаги, имеют длинные лезвия и почти такой же длины ручки, так как для резки бумаги не требуется большой силы, а длинным лезвием удобнее резать по прямой линии. Ножницы для резки листового металла (рис. 156), имеют ручки гораздо длиннее лезвий, так как сила, сопротивления металла велика и для ее уравновешивания плечо действующей силы приходится значительно увеличивать. Еще больше разница между длиной ручек и расстоянием режущей части от оси вращения в кусачках (рис. 157), предназначенных для перекусывания проволоки.

    Рычаги различного вида имеются у многих машин. Ручка швейной машины, педали или ручной тормоз велосипеда, педали автомобиля и трактора, клавиши пишущей машинки и пианино - все это примеры рычагов, используемых в данных машинах и инструментах.

    Примеры применения рычагов вы можете найти в своей школьной мастерской. Это рукоятки тисков и верстаков, рычаг сверлильного станка и т, д.

    На принципе рычага основано действие и рычажных весов (рис. 158). Учебные весы, изображенные на рисунке 43 (с. 39), действуют как равноплечий рычаг . В десятичных весах (рис. 158, 4) плечо, к которому подвешена чашка с гирями, в 10 раз длиннее плеча, несущего груз. Это значительно упрощает взвешивание больших грузов. Взвешивая груз на десятичных весах, следует умножить массу Гирь на 10.

    Устройство весов для взвешивания грузовых вагонов, автомобилей и повозок также основано на законах рычага.

    Рычаги встречаются также в разных частях тела животных и человека. Это, например, конечности, челюсти. Много рычагов можно указать в теле насекомых, птиц , в строении растений. Типичный рычаг - ствол дерева и его продолжение - корень.

    На рисунке 159, в изображены кости предплечья.

    Точка опоры находится в локтевом суставе. Действующая сила F-сила мышц, сгибающих предплечье, сила сопротивления R - сила тяжести поддерживаемого кистью руки груза. Сила F приложена ближе к точке опоры, чем сила R (см. рис. 159, в). Следовательно, F>R, т. е. рычаг дает проигрыш в силе и выигрыш в пути.

    Вопросы.

    1. Приведите примеры применения рычагов в быту, в технике, в школьной мастерской.
    2. Объясните, почему кусачки дают выигрыш в силе.

    Упражнения.

    1. Укажите точку опоры и плечи сил у рычагов, изображенных на рисунке 159. При каком положении груза (д, е) палка, которую используют при переносе груза, меньше давит на плечо? Ответ обоснуйте.
    2. Объясните действие весла как рычага (рис. 160).
    3. На рисунке 161 изображен разрез предохранительного клапана 1 . Рассчитайте, какой груз надо повесить на рычаг, чтобы пар через клапан не выходил. Давление в котле в 12 раз больше нормального атмосферного давления. Площадь клапана S = 3 см2, вес клапана и вес рычага не учитывать. Плечи сил измерьте по рисунку. Куда нужно переместить груз, если давление пара в котле увеличится? уменьшится? Ответ обоснуйте.
    4. На рисунке 162 изображена схема подъемного крана, Рассчитайте, какой груз можно поднимать при помощи этого крана, если масса противовеса 1000 кг.
    5. Предохранительный клапан - особое приспособление, открывающее, например, отверстие в паровом котле, когда давление пара в нем становится больше нормы.

    Задания.

    Рассмотрите устройство плоскогубцев (или кусачек, щипцов для сахара, ножниц для жести). Найдите у них ось вращения, плечо силы сопротивления и плечо действующей силы. Подсчитайте, какой выигрыш в силе может дать данный инструмент.

    Осмотрите у себя дома бытовые машины и инструменты: мясорубку, швейную машину, нож для открывания консервов, щипцы и др. Укажите в этих механизмах точку опоры, точки приложения сил, плечи.

    Подготовьте доклад на тему «Рычаги в организмах человека, животных и насекомых».

    Птицы - единственные существа, способные имитировать человеческую речь. Кроме попугаев, это делают скворцы, вороны и другие птицы. В книге рассказывается об образе жизни и поведении «говорящих» птиц, в первую очередь попугаев, их содержании в неволе, обучении. Особое внимание уделяется словарю наиболее выдающихся «говорунов». Рассматриваются строение и функции голосового аппарата, слухового анализатора птиц. Описывается новая методика обучения, основанная на формировании у попугаев ассоциаций между словом и предметом. Много полезного найдут для себя любители птиц, занимающиеся обучением волнистых попугайчиков.

    «Говорящие» птицы - уникальная загадка природы. Несмотря на то, что уже длительное время это явление интересует любителей птиц, оно еще не разгадано. Несколько десятилетий назад возрос интерес к обучению «говорению» волнистых попугайчиков. Оказалось, что они не просто копируют человеческую речь, но могут связывать слово и обозначаемый им предмет, ситуацию и высказывание. Некоторые из них отвечают на вопросы человека, обмениваются с ним репликами. Какие виды птиц «говорят», где они живут, как они ведут себя на воле, как у них устроен слух и голосовой аппарат, как научить волнистого попугайчика сговорить, как выбрать подходящую птицу, как ее содержать, чем кормить обо всем этом рассказывает данная книга.

    Для зоологов, биоакустиков, зоопсихологов и широкого круга читателей.

    На 1-й стр. обложки: красный ара (фото Дж. Холтона).

    Книга:

    <<< Назад
    Вперед >>>

    Среднее ухо поглощает энергию звуковой волны. Коэффициенты отражения тела и воздуха различны. Для того чтобы звук поглощался и большая часть его энергии использовалась, необходима нежная барабанная перепонка со сложным поддерживающим и регулирующим аппаратом.

    У млекопитающих барабанная перепонка совсем маленькая по сравнению с птичьей, у домовой мыши ее площадь составляет всего 2,7 мм 2 , тогда как у пеночки она в несколько раз больше - 7,8 мм 2 . И у млекопитающих она вогнутая, а у птиц выпуклая, в виде высокого шатра.

    Но среднее ухо не только поглощает звук, оно его обрабатывает, регулирует его дальнейшую передачу. 13 этом смысле логика - чем сложнее среднее ухо, тем совершеннее регулируемая передача - как будто будет оправданной. Но только отчасти. Потому что среднее ухо птиц устроено не проще, а иначе.

    Общий вид среднего уха птиц изображен на рис. 5. Бросается в глаза увеличенная по размерам, округлая и выпуклая кнаружи, в виде шатра (у млекопитающих она относительно меньше и вогнута) барабанная перепонка, приросший к ней с одного края хрящевой элемент - экстраколумелля, продолжающаяся в слуховую косточку, упирающуюся другим концом в овальное окно улитки. При этом птицы имеют всего одну среднеушную мышцу, регулирующую натяжение барабанной перепонки.

    Млекопитающие имеют три слуховые косточки, соединенные в виде зигзага и управляемые двумя мышцами. За счет этого передача звука сопровождается сложными рычажными движениями, позволяющими регулировать эту передачу. Слабые звуки могут усиливаться, сильные ослабляться или вообще блокироваться, форма сигнала и некоторые другие его характеристики - меняться в процессе передачи. Обеспечивающие это слуховые косточки могут двигаться, подобно поршню, совершать круговые движения, смещаясь как рычаг, и поворачиваться вдоль своей оси. Но в ухе птиц всего одна косточка и плюс хрящевой элемент, связывающий ее с барабанной перепонкой, - экстраколумелля. И всего одна мышца. Какие уж тут рычажные движения!

    Длительное время рычажная подвижность слухового столбика среднего уха птиц вообще отрицалась. Ученые полагали, что единственная слуховая косточка двигается, подобно поршню, передавая на внутреннее ухо то, что приходит на барабанную перепонку с усилением, определяемым соотношением площадей перепонки и круглого окна. Никакой регуляции нет.

    Для того чтобы доказать рычажную подвижность у птиц, пришлось пускаться на различные ухищрения. Перерезать хрящевую экстраколумеллю, с помощью которой косточка связана с барабанной перепонкой. Экстраколумелля имеет вид треноги, одна из ног которой упирается в центр перепонки и натягивает ее (вот почему перепонка у птиц выпукла, а не вогнута, как у млекопитающих), две другие располагаются в контакте с костным краем перепонки. Косточка прирастает к той точке экстраколумелли, где сходятся все три ее ноги.

    Используя в качестве индикатора биоэлектрическую активность рецепторного отдела, вызванную действием звукового щелчка (кохлеарные потенциалы), и перерезая на разных уровнях опорные отростки - ноги экстраколумелли, можно получить чисто поршневой или чисто рычажный характер движений столбика и исследовать их роль в передаче звука раздельно. Опыты показали, что значение рычажной подвижности слухового столбика в работе слуховой системы птиц велико.

    Сотрудник Московского университета В. Д. Анисимов разработал интересную методику изучения звукопередающей системы птиц - методику светящейся точки.


    Рис. 5. Особенности строения и функционировании среднего уха птицы, способной к имитации речи (Анисимов, 1971) 1, 11 - расположение элементов среднего уха до сокращения мышцы; III, IV - смещения элементов при сокращении мышцы (справа соответствующие им изменения миограммы - EMG и микрофонного компонента - М кохлеарных потенциалов: до сокращения - а, после сокращения - б, в). 1 - барабанная перепонка; 2 - связка; 3 - супраколумеллярный отросток; 4 - инфраколумеллярный отросток; 5 - сухожилие мышцы; 6 - экстраколумеллярный отросток; 7 - платнерова связка; 8 - слуховая косточка; 9 - подошва косточки; S - сигнал

    Наклеивая на различные участки звукопередающей системы кусочки блестящей фольги, отражающей свет, он зарегистрировал положение слуховой косточки и хрящевой экстраколумелли в различных динамических состояниях.

    Другой важной методикой, разработанной В. Д. Анисимовым, было макетирование звукопередающей системы и ее функций на увеличенной кинематической модели, выполненной из прозрачного плексигласа. Задавая различные режимы сокращения среднеушной мышцы и вызываемого ею натяжения барабанной перепонки, можно было проследить характер подвижности звукопередающей системы, рычажные движения слухового столбика и экстраколумелли.

    Напыление кристаллического серебра на различные элементы среднего уха, их подкрашивание и маркировка позволили заснять на пленку весь процесс движений, в том числе и рычажных звукопередающей системы. Эти же процессы повторились на увеличенной, модели среднего уха птиц, пропорционально увеличенной во всех звеньях.

    Таким образом, было доказано, что среднее ухо птиц, иначе, чем у млекопитающих, устроенное, работает по тем же законам и решает аналогичные задачи.

    <<< Назад
    Вперед >>>

    Как? Почему?»

    Турнир проводится как внеклассное мероприятие. Желательно проводить его отдельно для 7-8 и 9-11 классов. За 1 раз можно провести 2 тура игры по 3 участника или 1 тур с 6 участниками. В этом случае разминку и конкурс красноречия разумнее провести сразу для всех участников. Предварительно проводится жеребьёвка для очерёдности выступлений в конкурсе красноречия и при выполнении заданий игры. С темой для выступления в конкурсе красноречия участники знакомятся перед началом игры. В третьем туре каждый участник выполняет 3 задания. В порядке, определённом жеребьёвкой каждый участник по таблице сам выбирает номер вопроса, на который будет отвечать. После этого он получает выбранное задание и выполняет его. После выполнения первого задания в таком же порядке участники выполняют сначала второе задание, а затем – третье. За каждое задание экспертная группа из учителей предметников и особо отличившихся в предыдущих играх учащихся выставляет участникам максимально 2 балла. Задание, с которым не справился участник, выполняют зрители (им тоже присваиваются такие же баллы). После получения правильного ответа (и когда с заданием никто не справился) участникам сообщается правильный ответ на задание. В конце игры, участник, желающий поправить своё турнирное положение может идти ва-банк с риском потерять все заработанные в игре баллы. Максимальное количество баллов за выполнение такого задания можно взять в два-три раза больше, чем за одно задание игры, поэтому для этого этапа игры берутся более сложные задания. В процессе подготовки к игре организатор тщательно подбирает чётко сформулированные задания и ответы к ним из разных предметов и составляет таблицу с номерами заданий. Экспертная группа по итогам всех этапов игры объявляет победителя турнира и дату проведения следующей игры. По итогам всех туров игры за год выявляется чемпион (рыцарь) учебного года.

    РЫЧАГИ В ТЕЛЕ ЧЕЛОВЕКА Приводя в движение кость, мышца действует на нее, как рычаг. В механике рычагом называют твердое тело, имеющее точку опоры, около которой оно может вращаться под влиянием противодействующих друг другу сил. По отношению точки приложения силы мышцы и точки сопротивления к точке опоры различают рычаги первого и второго рода.



    РЫЧАГИ ПЕРВОГО И ВТОРОГО ТИПА Рычагом первого типа, двуплечим, или рычагом равновесия, в теле человека является голова (А). Подвижная опора черепа находится в атланто- затылочном сочленении. Неодинаковые по величине плечи рычага располагаются спереди и сзади от него. На переднее плечо действует тяжесть лицевой части головы, а на заднее – сила мышц, прикрепляющихся к затылочной кости. При вертикальном положении головы силы действия и противодействия, направленные на плечи рычага, уравновешиваются. Таз, балансирующий на головках бедренных костей, тоже рычаг первого рода.


    РЫЧАГИ ПЕРВОГО И ВТОРОГО ТИПА Рычаг второго типа – одноплечий. Здесь точки сопротивления и приложения силы находится по одну сторону от опоры. В теле человека он имеет две разновидности. Для примера возьмем руку при опоре на локтевой сустав. На плечо рычага действует тяжесть предплечья с кистью. В случае напряжения плечелучевой мышцы, прикрепляющейся вблизи кисти и следовательно, вблизи приложения тяжести, создаются выгодные условия для работы, увеличивается ее эффективность. Эта разновидность одноплечего рычага носит название рычага силы. В случае напряжения двуглавой мышцы, прикрепляющейся вблизи точки опоры, получается меньший эффект двуглавой мышцы, прикрепляющейся вблизи точки опоры, получается меньший эффект при преодолении тяжести, но зато работа совершается с большей быстротой. Эта разновидность рычага второго рода называется рычагом скорости (Б). По принципу рычага второго рода в теле работает большинство мышц.


    РЫЧАГИ В ТЕЛЕ ПТИЦ Гребной полет. Главный летательный аппарат – крыло, одноплечий рычаг, который вращается в плечевом суставе. Прикрепление маховых перьев и особенность их подвижности таковы, что при ударе вниз крыло почти не пропускает воздух. При подъеме крыла, вследствие сгибания осевой части скелета, поверхность действия крыла на воздух становится меньше. Благодаря повороту маховых перьев, крыло становится проницаемым для воздуха. Чтобы голубь мог держаться в воздухе, необходимы его движения, т. е. ветер, создаваемый взмахами крыльев. В начале полета движения крыльев более частые, затем, по мере увеличения скорости полета и сопротивляемости, число взмахов крыльев уменьшается, доходя до определенной частоты.


    РЫЧАГИ В ТЕЛЕ ПТИЦ Кости нижних конечностей у птиц срастаются. Слияние ряда костей предплюсны и всех костей плюсны приводит к появлению цевки. Так возникает добавочный рычаг – прочная опора пальцев, одновременно увеличивающая длину шага. У подавляющего большинства птиц развито четыре пальца. Первый направлен назад, а три остальных вперед.


    ЖУК-ПЛАВУНЕЦ Уплощенная, обтекаемая форма тела (вследствие плотного соединения головы, грудных и брюшных сегментов), практически полное отсутствие щетинок на теле, сильно развитые и сросшиеся с задней грудью задние тазики, которые формируют рычаг для уплощенных, усаженных плавательными волосками задних ног, обеспечивают эффективное перемещение жуков в толще воды.


    КРЫЛЬЯ Движение крыльев у насекомых - результат работы сложного механизма и определяется, с одной стороны, особенностью сочленения крыла с туловищем, а с другой - действием особых крыловых мышц. В общих чертах основной механизм движения крыльев представляется следующим образом (рис. 319). Само крыло - это двуплечий рычаг с неодинаковой длиной плечей. С тергитом и боковой пластинкой крыло соединяется тонкими и гибкими мембранами. Чуть отступя от места этого соединения, крыло опирается на небольшой, имеющий вид столбика вырост боковой пластинки, который и является точкой опоры крылового рычага.