• Что можно приготовить из кальмаров: быстро и вкусно

    В основе мышечного сокращения лежит перемещение нитей актина относительно нитей миозина. Нити актина двигаются, как по туннелю, между миозиновыми фибриллами, за счет образования связей с миозином. В результате этого сарко- мер укорачивается (гипотеза «скользящих нитей» А. Хаксли) (рис. 7.29). При этом длина 1-дисков уменьшается, А-диски сохраняют свой размер.

    Скольжение актиновых и миозиновых нитей друг относительно друга возможно только в присутствии ионов Са 2+ и АТФ, которая образуется при расщеплении гликогена, глюкозы и жирных кислот. Мышцы характеризуются активным обменом веществ. К ним подходит большое количество кровеносных и лимфатических сосудов, а также нервов. Последние образуют с мышечными волокнами синаптические контакты.

    Всю цепь событий при мышечном сокращении можно представить следующим образом: в нервно-мышечном синапсе под влиянием приходящих из ЦНС но нервному волокну импульсов выделяется медиатор ацетилхолин , деполяризующий мембрану мышечного волокна. Возникающий при этом импульс распространяется по мембране волокна и Т-трубочкам и передается на мембрану саркоплазматического ретикулума, из которого в саркоплазму выходит кальций. Ионы кальция способствуют образованию комплекса акто- миозина и расщеплению АТФ; освобождающаяся при этом энергия обеспечивает скольжение тонких актиновых нитей вдоль миозиновых.

    Рис. 7.29.

    Изменение взаиморасположения миофибрилл при расслаблении (б) и сокращении (в) мышечного волокна

    Расслабление мышцы связано с обратным поступлением Са 2+ в саркоплазматический ретикулум, что происходит при участии активных механизмов, связанных с работой ионных насосов. Если концентрация ионов кальция в саркоплазме снижается и они перекачиваются в эндоплазматическую сеть, то сокращение мышечного волокна прекращается.

    Скелетная мускулатура человека состоит из мышечных волокон нескольких типов с различными структурно-функциональными характеристиками. Выделяют четыре основных типа мышечных волокон: медленные фазические волокна окислительного типа, быстрые фазические волокна окислительного типа, быстрые фазические окислительные волокна с гликолитическим типом окисления и тонические волокна.

    Медленные фазические мышечные волокна окислительного типа содержат большое количество белка миоглобина, связывающего 0 2 . Этот белок аналогичен гемоглобину эритроцитов и придает мышечным волокнам темно-красную окраску. Мышцы, состоящие преимущественно из этих волокон, участвуют в поддержании позы человека. Утомление в них развивается очень медленно, а восстанавливаются функции очень быстро.

    Мышцы, состоящие преимущественно из быстрых фази- ческих волокон окислительного типа , выполняют быстрые сокрашения без заметного утомления. Это связано с наличием в волокнах большого количества митохондрий и хорошей способностью синтезировать АТФ. Основное назначение таких волокон - выполнение быстрых, энергичных движений.

    Тонические волокна сокращаются и расслабляются медленно, так как активность АТФ в них низка. Такие волокна входят в состав некоторых мышц глаза.

    Большинство скелетных мышц человека состоит из мышечных волокон различных типов с преобладанием одного из них в зависимости от функций, которые выполняет та или иная мышца.

    Основное физиологическое свойство мышц - сократимость - проявляется в способности мышцы к укорачиванию или развитию напряжения. Различают два типа мышечных сокращений - изотонические и изометрические. При изотоническом сокращении волокна мышцы укорачиваются, но напряжение остается постоянным. При изометрическом - мышца укоротиться не может, длина мышечных волокон остается неизменной, так как оба се конца неподвижно закреплены, но напряжение по мере их сокращения возрастает.

    По отношению к целому организму применяется иная классификация типов сокращения: изометрическим называют сокращение, при котором длина мышцы не меняется, концентрическим - при котором мышца укорачивается, эксцентрическим - удлиняется (например, при медленном опускании груза). Для естественных движений обычно характерны все три типа сокращения мышц.

    Функциональной единицей скелетной мускулатуры считается не отдельное мышечное волокно, а нейромоторная , или двигательная единица , которая включает несколько мышечных волокон, иннервируемых мотонейроном спинного мозга (рис. 7.30, 7.31). В ответ на импульсы, приходящие от мотонейрона, сокращаются все мышечные волокна, входящие в нейромоторную единицу.

    Число мышечных волокон, составляющих двигательную единицу, скорость их сокращения и устойчивость к утомлению неодинаковы. В зависимости от их свойств двигательные единицы подразделяют на быстрые (фазные) } медленные (тониРис. 7.30. Двигательные единицы

    ческиё) и переходные. Двигательные единицы каждой мышцы неодинаковы. Мышцы, обеспечивающие точные и быстрые движения (например, мышцы пальцев руки), состоят в основном из нескольких сотен или тысяч быстрых двигательных единиц. В большинстве мышц смешанного типа первыми активизируются медленные двигательные единицы, развивающие


    Рис. 7.31

    а,6 - нервно-мышечный синапс; в - электронная сканирующая

    микроскопия небольшую силу сокращения, а при увеличении возбуждения в сокращение вовлекаются мышечные волокна, развивающие большую силу. Активация быстрых нсйромогорных единиц обеспечивает точную двигательную реакцию.

    В естественных условиях к мышце из ЦНС поступают не одиночные импульсы, а серии импульсов, на которые она реагирует не одиночным, а длительным (тетаническим ) сокращением. Оно обусловлено тем, что каждый следующий импульс приходит в момент, когда еще не закончилась предыдущая волна сокращения. Последняя, суммируясь с предыдущей, продлевает сокращение мышцы. Если каждая новая волна сокращения возникает в момент, когда мышца уже начала расслабляться под влиянием предшествующего раздражения, возникает зубчатый тетанус. При меньшем интервале между раздражениями, когда каждая новая волна сокращения возникает до начала мышечного расслабления, образуется сплошной, или гладкий , тетанус. Отдельные волокна мышцы при ее естественной стимуляции с нерва отвечают на каждый импульс одиночным сокращением. Слитный тетанус получается за счет суммации сокращений отдельных мышечных волокон. Обычно мышечные волокна одной мышцы сокращаются не одновременно, так как импульсы от различных мотонейронов ЦНС также приходят к ним не одновременно. Это способствует образованию и поддержанию слитного тетаничес- кого сокращения мышцы.

    Сокращаясь, мышца выполняет работу. Работа мышц зависит от силы их сокращения, а сила сокращения одной и той же мышцы - от количества нейромоторных единиц, участвующих в нем. Чем их больше, тем сокращение интенсивнее. Сила сокращения также зависит от частоты раздражения. До известного предела увеличение частоты стимуляции сопровождается возрастанием силы мышечного сокращения. Это связано с тем, что с увеличением частоты раздражения в реакцию включается все большее количество мышечных волокон. Максимальное напряжение, которое может развить мышца, определяется числом образующих ее волокон: чем оно больше, тем больше сила мышц. В связи с этим перистые мышцы, состоящие из множества волокон, отличаются большей силой.

    Проявление силы мышцы зависит и от особенностей ее прикрепления к костям. Мышцы с большей площадью прикрепления или опоры, имеют большие возможности для проявления силы. Важно также и место приложения силы мышц. Кости вместе с прикрепляющимися к ним мышцами являются рычагами, поэтому чем ближе к точке приложения силы тяжести или чем дальше от точки опоры рычага и ближе к точке приложения силы тяжести прикрепляется мышца, тем большую силу она может развить (рис. 7.32).

    Зависимость мышечной силы от таких факторов отчетливо проявляется в деятельности мышц верхней и нижней конечностей. Верхняя конечность предназначена для выполнения разнообразных точных и быстрых движений. Функция нижних конечностей требует большой силы их мышц. Этим функциональным задачам соответствует и характер прикрепления соответствующих мышц. Так, дельтовидная мышца, расположенная в области плечевого сустава, имеет небольшую поверхность опоры и прикрепляется на плечевой кости вблизи от места опоры рычага. У мышц нижних конечностей площадь опоры велика и точка приложения силы находится далеко от точки опоры. У ягодичной мышцы площадь опоры в 23 раза больше, чем у дельтовидной, а площадь прикрепления - больше в 4,5 раза.

    Между силой мышцы и величиной ее укорочения нет прямо пропорциональной зависимости. Максимальное укорочение мышцы, а следовательно, и интенсивность сокращения, вызываемого этим укорочением движения, в том или ином суставе зависит от длины мышечных волокон. Она наибольшая в мышцах с параллельным расположением волокон, в то время как большей силой обладают перистые мышцы. Первоначально растянутая мышца при сокращении укорачивается на большую величину.

    Работа мышцы при сокращении равна произведению массы груза на поднятую высоту. Отсюда следует, что максимальная работа, выполняемая при одиночном сокращении мышцы, зависит от ее силы (чем больше сила, тем больший груз может быть поднят) и степени укорочения мышцы. В про-


    Рис. 732.

    а - рычаг равновесия; б - рычаг скорости. Треугольник - точка опоры; темные стрелки показывают направление сил мышечной тяги; пунктирные стрелки - направление силы тяжести; пунктирная стрелка - движение цессе естественной деятельности человека величина работы, выполняемой той или иной мышцей, в значительной степени зависит от се способности длительно находиться в сокращенном состоянии (выносливость мышц). Различают выносливость к статическим и динамическим усилиям. Выносливость к статическим усилиям определяется временем, в течение которого удерживается величина заданного усилия. У разных мышц она неодинакова. Наименьшей выносливостью характеризуется трехглавая мышца плеча (1 мин - при усилии, равном 50% максимального), наибольшей - икроножная мышца (7 мин).

    Выносливость к длительной работе зависит не только от величины поднимаемого груза, но и от темпа работы. Работа бывает наибольшей при какой-то средней величине груза и частоте движений. Для каждого вида мышечной деятельности можно подобрать некоторый средний (оптимальный) ритм и величину нагрузки, при которой работа станет максимальной, а утомление будет развиваться постепенно.

    Работа мышц - необходимое условие их сокращения. Длительная бездеятельность ведет к атрофии мышц и потере работоспособности. Умеренная систематическая работа мышц способствует увеличению их объема, возрастанию силы и работоспособности, что важно для физического развития всего организма.

    При длительной динамической или статической работе наступает утомление мышц. Утомлением называют временное понижение работоспособности клетки, органа или целостного организма, наступающее в результате работы и исчезающее после отдыха. В естественных условиях утомление связано, прежде всего, с изменениями, происходящими в нервной системе, в частности с нарушением проведения возбуждения в межнейрональных и нервно-мышечных синаптических контактах. Скорость наступления утомления зависит от состояния нервной системы, ритма, в котором производится работа, и от величины нагрузки. После отдыха работоспособность восстанавливается. И. М. Сеченов впервые (в 1903 г.) показал, что восстановление работоспособности утомленных мышц руки человека после длительной работы по подъему груза происходит быстрее, если в период отдыха производить работу другой рукой или ногой. Такой отдых был назван активным.

    Чередование умственного и физического труда, динамические паузы до и во время занятий способствуют повышению работоспособности детей и взрослых. Чем меньше ребенок, тем быстрее у него развивается утомление. В грудном возрасте утомление наступает через 1,5-2 часа обычного бодрствования. Дети утомляются и при неподвижности или длительном ограничении движений.

    Мышцы человека даже в покое находятся в несколько сокращенном состоянии. Длительное удерживание напряжения называют мышечным тонусом . Во время сна или при наркозе тонус мышц снижается и вследствие этого тело расслабляется. Тонические сокращения мышц не приводят к развитию утомления. Полное исчезновение тонуса мышц наблюдается только после смерти. Сохранение тонуса обусловлено постоянным поступлением к мышце следующих друг за другом с большими интервалами нервных импульсов от двигательных нейронов Ц11С. Активность этих нейронов поддерживается импульсами, поступающими из вышележащих отделов ЦНС и от рецепторов мышц - мышечных веретен.

    Тонус мышц играет важную роль в осуществлении координации движений. У новорожденных и грудных детей преобладает тонус мышц-сгибателей, обусловленный повышенной возбудимостью красного ядра среднего мозга. По мере функционального созревания пирамидной системы мозга и нейронов коры больших полушарий тонус мышц у детей снижается. Это четко проявляется во втором полугодии жизни ребенка и является необходимым условием для развития ходьбы. К трем - пяти годам устанавливается равновесие тонуса мышц-аитагонистов.

    text_fields

    text_fields

    arrow_upward

    В покоящихся мы­шечных волокнах при отсутствии импульсации мотонейрона по­перечные миозиновые мостики не прикреплены к актиновым миофиламентам. Тропомиозин расположен таким образом, что бло­кирует участки актина, способные взаимодействовать с попере­чными мостиками миозина. Тропонин тормозит миозин - АТФ-азную активность и поэтому АТФ не расщепляется. Мышечные волокна находятся в расслабленном состоянии.

    При сокращении мышцы длина А-дисков не меняется, J-диски укорачиваются, а Н-зона А-дисков может исчезать (рис. 4.3.).

    Рис.4.3. Сокращение мышцы. А — Поперечные мостики между актином и миозином разомкнуты. Мышца находится в расслабленном состоянии.
    Б — Замыкание поперечных мостиков между актином и миозином. Совершение головками мостиков гребковых движений по направлению к центру саркомера. Скольжение актиновых нитей вдоль миозиновых, укорочение саркомера, развитие тяги.

    Эти данные явились основой для создания теории, объясняющей сокра­щение мышцы механизмом скольжения (теорией скольжения) тон­ких актиновых миофиламентов вдоль толстых миозиновых. В ре­зультате этого миозиновые миофиламенты втягиваются между окру­жающими их актиновыми. Это приводит к укорочению каждого саркомера, а значит, и всего мышечного волокна.

    Молекулярный механизм сокращения мышечного волокна состоит в том, что возникающий в области концевой пластинки потенциал действия распространяется по системе поперечных трубочек вглубь волокна, вызывает деполяризацию мембран цистерн саркоплазмати-ческого ретикулума и освобождение из них ионов кальция. Свобод­ные ионы кальция в межфибриллярном пространстве запускают процесс сокращения. Совокупность процессов, обуславливающих распространение потенциала действия вглубь мышечного волокна, выход ионов кальция их саркоплазматического ретикулума, взаимо­действие сократительных белков и укорочение мышечного волокна называют «электромеханическим сопряжением». Временная последо­вательность между возникновением потенциала действия мышечного волокна, поступлением ионов кальция к миофибриллам и развитием сокращения волокна показана на рисунке 4.4.

    Рис.4.4. Схема временной последовательности развития
    потенциала действия (ПД), освобождения ионов кальция (Са2+) и развития изометрического сокращения мышцы.

    При концентрации ионов Са 2+ в межмиофибриллярном пространстве ниже 10″ тропомиозин располагается таким образом, что блокирует прикрепление поперечных миозиновых мостиков к нитям актина. По­перечные мостики миозина не взаимодействуют с нитями актина. Продвижение относительно друг друга нитей актина и миозина отсут­ствует. Поэтому мышечное волокно находится в расслабленном состо­янии. При возбуждении волокна Са 2+ выходит из цистерн саркоплазматического ретикулума и, следовательно, концентрация его вблизи миофибрилл возрастает. Под влиянием активирующих ионов Са 2+ молекула тропонина изменяет свою форму таким образом, что вытал­кивает тропомиозин в желобок между двумя нитями актина, освобож­дая тем самым участки для прикрепления миозиновых поперечных мостиков к актину. В результате поперечные мостики прикрепляются к актиновым нитям. Поскольку головки миозина совершают «гребковые» движения в сторону центра саркомера происходит «втягивание» актиновых миофиламентов в промежутки между толстыми миозиновыми нитями и укорочение мышцы.

    Источник энергии для сокращения мышечных волокон

    text_fields

    text_fields

    arrow_upward


    Источником энергии для сокращения мышечных волокон служит АТФ. С инактивацией тропонина ионами кальция активируются каталитические центры для расщепления АТФ на головках миозина. Фермент миозиновая АТФ-аза гидролизует АТФ, расположенный на головке миозина, что обеспечивает энергией поперечные мостики. Освобождающиеся при гидролизе АТФ молекула АДФ и неоргани­ческий фосфат используются для последующего ресинтеза АТФ. На миозиновом поперечном мостике образуется новая молекула АТФ. При этом происходит разъединение поперечного мостика с нитью актина. Повторное прикрепление и отсоединение мостиков продол­жается до тех пор, пока концентрация кальция внутри миофибрилл не снижается до подпороговой величины. Тогда мышечные волокна начинают расслабляться.

    При однократном движении поперечных мостиков вдоль актино­вых нитей (гребковых движениях) саркомер укорачивается примерно на 1% его длины. Следовательно, для полного изотонического со­кращения мышцы необходимо совершить около 50 таких гребковых движений. Только ритмическое прикрепление и отсоединение голо­вок миозина может втянуть нити актина вдоль миозиновых и со­вершить требуемое укорочение целой мышцы. Напряжение, разви­ваемое мышечным волокном, зависит от числа одновременно зам­кнутых поперечных мостиков. Скорость развития напряжения или укорочения волокна определяется частотой замыкания поперечных мостиков, образуемых в единицу времени, то есть скоростью их прикрепления к актиновым миофиламентам. С увеличением скорос­ти укорочения мышцы число одновременно прикрепленных попере­чных мостиков в каждый момент времени уменьшается. Этим и можно объяснить уменьшение силы сокращения мышцы с увеличе­нием скорости ее укорочения.

    При одиночном сокращении процесс укорочения мышечного во­локна заканчивается через 15-50 мс, так как активирующие его ионы кальция возвращаются при помощи кальциевого насоса в цистерны саркоплазматического ретикулума. Происходит расслабле­ние мышцы.

    Поскольку возврат ионов кальция в цистерны саркоплазматичес­кого ретикулума идет против диффузионного градиента, то этот процесс требует затрат энергии. Ее источником служит АТФ. Одна молекула АТФ затрачивается на возврат 2-х ионов кальция из межфибриллярного пространства в цистерны. При снижении содер­жания ионов кальция до подпорогового уровня (ниже 10 V) моле­кулы тропонина принимают форму, характерную для состояния покоя. При этом вновь тропомиозин блокирует участки для при­крепления поперечных мостиков к нитям актина. Все это приводит к расслаблению мышцы вплоть до момента прихода очередного потока нервных импульсов, когда описанный выше процесс повто­ряется. Таким образом, кальций в мышечных волокнах играет роль внутриклеточного посредника, связывающего процессы возбуждения и сокращения.

    Режимы и типы мышечных сокращений

    text_fields

    text_fields

    arrow_upward

    3.1. Одиночное сокращени

    Режим сокращений мы­шечных волокон определяется частотой импульсации мотонейронов. Механический ответ мышечного волокна или отдельной мышцы на однократное их раздражение называется одиночным сокращением .

    При одиночном сокращении выделяют:

    1. Фазу развития напряжения или укорочения;

    2. Фазу расслабления или удлинения (рис.4.5.).

    Рис.4.5. Развитие во времени потенциала действия (А) и изометрического сокращения мышцы, приводящей большой палец кисти (Б).
    1 - фаза развития напряжения; 2 - фаза расслабления.

    Фаза расслабления продолжается примерно в два раза дольше, чем фаза напряжения. Длительность этих фаз зависит от морфофункциональных свойств мышечного волокна: у наиболее быстро сокращающихся волокон глазных мышц фаза напряжения составляет 7-10 мс, а у наиболее медленных волокон камбаловидной мышцы - 50-100 мс.

    В естественных условиях мышечные волокна двигательной едини­цы и скелетная мышца в целом работают в режиме одиночного сокращения только в том случае, когда длительность интервала между последовательными импульсами мотонейрона равна или пре­вышает длительность одиночного сокращения иннервируемых им мышечных волокон. Так, режим одиночного сокращения медленных волокон камбаловидной мышцы человека обеспечивается при частоте импульсации мотонейрона менее 10 имп/с, а быстрых волокон глазодвигательных мышц - при частоте импульсации мотонейрона менее 50 имп/с.

    В режиме одиночного сокращения мышца способна работать дли­тельное время без развития утомления. Однако в связи с тем, что длительность одиночного сокращения невелика, развиваемое мы­шечными волокнами напряжение не достигает максимально возмож­ных величин. При относительно высокой частоте импульсации мо­тонейронов каждый последующий раздражающий импульс приходит­ся на фазу предшествующего напряжения волокона, то есть до того момента, когда оно начинает расслабляться. В этом случае механи­ческие эффекты каждого предыдущего сокращения суммируются с последующим. Причем величина механического ответа на каждый последующий импульс меньше, чем на предыдущий. После несколь­ких первых импульсов последующие ответы мышечных волокон не изменяют достигнутого напряжения, а лишь поддерживают его. Та­кой режим сокращения называется гладким тетанусом (рис.4.6.). В подобном режиме двигательные единицы мышц человека работают при развитии максимальных изометрических усилий. При гладком тетанусе развиваемое ДЕ напряжение в 2-4 раза больше, чем при одиночных сокращениях.

    Рис.4.6. Одиночные (а) и тетанические (б,в,г,д) сокращения скелетной мышцы. Накладывание волн сокращения друг на друга и образование тетануса при частотах раздражения: 5 -15 раз/с; в — 20 раз/с; г — 25 раз/с; д — более 40 раз в 1 сек (гладкий тетанус).

    В тех случаях, когда промежутки между последовательными им­пульсами мотонейрона меньше времени полного цикла одиночного сокращения, но больше длительности фазы напряжения, сила со­кращения ДЕ колеблется. Этот режим сокращения называется зуб­ чатым тетанусом (рис. 4.6.).

    Гладкий тетанус для быстрых и медленных мыши достигается при разных частотах импульсации мотонейронов. Зависит это от времени одиночного сокращения. Так, гладкий тетанус для быстрой глазо­двигательной мышцы проявляется при частотах свыше 150-200 имп/с, а у медленной камбаловидной мышцы - при частоте около 30 имп/с. В режиме тетанического сокращения мышца способна работать лишь короткое время. Это объясняется тем, что из-за отсутствия периода расслабления она не может восстановить свой энергетический потенциал и работает как бы «в долг».

    Механическая реакция целой мышцы при ее возбуждении

    Механическая реакция целой мышцы при ее возбуждении выра­жается в двух формах - в развитии напряжения и в укорочении. В естественных условиях деятельности в организме человека степень укорочения мышцы может быть различной.

    По величине укорочения различают три типа мышечного сокращения:

    1. Изотоничес­кий - это сокращение мышцы, при которой ее волокна укорачи­ваются при постоянной внешней нагрузке. В реальных движениях чисто изотоническое сокращение практически отсутствует;

    2. Изо­метрический - это тип активации мышцы, при котором она развивает напряжение без изменения своей длины. Изометрическое сокращение лежит в основе статической работы;

    3. Ауксотонический или анизотонический тип - это режим, в котором мыш­ца развивает напряжение и укорачивается. Именно такие сокраще­ния имеют место в организме при естественных локомоциях - ходьбе, беге и т.д.

    3.2. Динамическое сокращени

    Изотонический и анизотонический типы сокра­щения лежат в основе динамической работы локомоторного аппа­рата человека.

    При динамической работе выделяют:

    1. Концентрический тип сокращения - когда внешняя нагрузка меньше, чем развива­емое мышцей напряжение. При этом она укорачивается и вызывает движение;

    2. Эксцентрический тип сокращения - когда внешняя нагрузка больше, чем напряжение мышцы. В этих условиях мышца, напрягаясь, все же растягивается (удлиняется), совершая при этом отрицательную (уступающую) динамическую работу

    РГУФКСиТ

    по физиологии

    Тема: "Механизм мышечного

    сокращения"

    Выполнила: студентка 2-го курса,

    специализации МРиТ

    Брояк Оксана

    Проверила: Захарьева Наталья

    Николаевна

    План реферата

    1. Анатомо-физиологические особенности строения мышечного волокна 3

    2. Электрические явления в мышце при сокращении. 4

    3. Основные параметры электромиограммы и их связь с функциональным состоянием мышцы (сила мышечного напряжения, степень утомляемости и др.) 6

    4. Механизмы сокращения и расслабления мышечного волокна. Теория скольжения. Роль саркоплазматического ретикулума и ионов кальция в сокращении. 8

    5. Энергетика мышечного сокращения. 13

    6. Формы сокращения мышц (изотоническая, изометрическая, смешанная) 16

    7. Особенности одиночных и тетанических мышечных сокращений медленных и быстрых мышечных волокон. Связь исходной длины и силы сокращения скелетной мышцы. Зависимость между силой и скоростью сокращения мышц 20

    8. Механизм регуляции силы сокращения мышц (число активных ДЕ, частота импульсации мотонейронов, синхронизация сокращения мышечных волокон отдельных ДЕ во времени) 21

    9. Значение АТФ в процессе сокращения мышечных волокон. Характеристика энергетических систем, обеспечивающих ресинтез АТФ, их мощность и ёмкость. 23

    Заключение. 25

    Используемая литература. 26

    1. Анатомо-физиологические особенности строения мышечного волокна

    Мышечное волокно представляет собой клетку цилиндрической формы. В мышце с параллельным ходом волокон они обычно крепятся к обоим сухожилиям, но в очень длинных мышцах большое число волокон короче всей мышцы. Такие мышечные волокна крепятся одним концом к сухожилию, а другим - к соединительнотканным перемычкам внутри мышц. Мышечное волокно покрыто тонкой эластичной мембраной – сарколеммой. Её структура подобна структуре мембран других клеток, в частности нервных. Мембрана мышечных клеток играет важную роль в возникновении и проведении возбуждения.

    Внутреннее содержание мышечного волокна называется саркоплазмой. Она состоит и 2-ух частей.1-ая – саркоплазматический матрикс – представляет собой жидкость, в которую погружены сократительные элементы мышечного волокна – миофибриллы. В этой жидкости находятся растворимые белки, гранулы гликогена, капельки жира, фосфатсодержащие вещества и другие малые молекулы и ионы.2-ая часть саркоплазмы – саркоплазматический ретикулум. Так обозначается система сложно связанных между собой элементов в виде вытянутых мешочков и продольных трубочек, расположенных между миофибриллами параллельно им. Мышечное волокно внутри пересекают поперечные трубочки. Выстилающие их мембраны по своей структуре сходны с сарколеммой. Поперечные трубочки соединяются с поверхностной мембраной мышечного волокна, связывая её внутренней части с межклеточным пространством. Продольные трубочки примыкают к поперечным, образуя так называемые цистерны в зоне контактов. Эти цистерны отделены от поперечных трубочек очень узкой щелью. На продольном разрезе волокна видна характерная структура – триада, включающая поперечную трубочку с прилегающими к ней с двух сторон цистернами. Ретикулярные триады фиксированы так, что их центр находится вблизи границы А и I-дисков. Саркоплазматический ретикулум играет важную роль в передаче возбуждения от поверхностной мембраны волокна вглубь к миофибриллам и в акте сокращения. Через саркоплазматический ретикулум и поперечные трубочки может также происходить выделение продуктов обмена из мышечной клетки в межклеточное пространство и далее в кровь. В мышечном волокне содержится до 1000 и более миофибрилл. Каждая из них состоит из параллельно лежащих нитей двух типов – толстых и тонких миофиламентов. Толстые нити состоят из миозина, а тонкие из актина, представляющих 2 основных типа сократительных белков.

    Нервно-мышечный синапс, с помощью которого мотонейрон связан с мышечным волокном, имеет 2 основные части – нервную (пресимпатическую) и мышечную (постсимпатическую). Первая часть представлена концевой веточкой аксона, погруженной в углубление на поверхности мышечного волокна. Поверхностная мембрана концевой веточки носит название пресимпатическая мембрана. Нервное окончание содержит более миллиона пузырьков ацетилхолина (АХ) – медиатора нервно-мышечного синапса. Мембрана, покрывающая мышечное волокно в области нервно-мышечного синапса, носит название постсинаптическая мембрана, она образует многочисленные складки, уходящие в глубь волокна благодаря чему увеличивается её поверхность. Постсимпатическая мембрана имеет так называемые холинорецепторные участки и содержит фермент ацетилхолинэстеразу (АХЭ). Пре - и постсимпатические мембраны разделены узкой синаптической щелью, открывающейся во внеклеточное пространство.

    2. Электрические явления в мышце при сокращении

    Сокращение – изменение механического состояния миофибриллярного сократительного аппарата мышечных волокон в результате дейтвия нервных импульсов.

    Скелетная мышца представляет собой сложную систему, преобразующую химическую энергию в механическую работу и тепло.

    По теории скольжения, в основе сокращения лежит механическое взаимодействие между миозиновыми и актиновыми миофиламентами благодоря образованию между ними в период активности попереречных мостиков.

    Непосредственным источником энергии для мышечного сокращения является расщепление высокоэнергетического вещества АТФ. В мышце происходит также промежуточная реакция, вовлекающая 2-ое высокоэнергетическое вещество – креатинфосфат (КФ). Оно не может действовать как непосредственный источник энергии, поскольку его расщепление не оказывает влияние на сократительные белки мышцы. КФ обеспечивает энергией ресинтез АТФ. В свою очередь, энергия для ресинтеза КФ обеспечивается окислением.

    Молекулярный механизм сокращения мышечного волокна состоит в том, что возникающий на мембране в области концевой пластинки потенциал действия распространяется по системе поперечных трубочек вглубь волокна, вызывает деполяризацию мембран цистерн саркоплазматического ретикулума и освобождение из них ионов кальция. Свободные ионы кальция в межфибриллярном пространстве запускают процесс сокращения. Совокупность процессов, обуславливающих распространение потенциала действия вглубь мышечного волокна, выход ионов кальция из саркоплазматического ретикулума, взаимодействие сократительных белков и укорочение мышечного волокна называют "электрическим сопряжением". Энергия гребкового движения одного мостика производит перемещение на 1% длины актиновой нити. Для дальнейшего скольжения сократительных белков друг относительно друга мостики между актином и миозином должны распадаться и вновь образовываться на следующем центре связывания Са2+-. Такой процесс происходит в результате активации в этот момент молекул миозина. Миозин приобретает свойства фермента АТФ-азы, который вызывает распад АТФ. Выделившаяся при распаде АТФ энергия приводит к разрушению имеющихся мостиков и образованию в присутствии Са2+новых мостиков на следующем участке актиновой нити. В результате повторения подобных процессов многократного образования и распада мостиков сокращается длина отдельных саркомеров и всего мышечного волокна в целом. Максимальная концентрация кальция в миофибрилле достигается уже через 3 мс после появления потенциала действия в поперечных трубочках, а максимальное напряжение мышечного волокна - через 20 мс.

    Весь процесс от появления мышечного потенциала действия до сокращения мышечного волокна называется электромеханической связью (или электромеханическим сопряжением). В результате сокращения мышечного волокна актин и миозин более равномерно распределяются внутри саркомера, и исчезает видимая под микроскопом поперечная исчерченность мышцы.

    3. Основные параметры электромиограммы и их связь с функциональным состоянием мышцы (сила мышечного напряжения, степень утомляемости и др.)

    Работа мышцы с небольшой нагрузкой сопровождается редкой частотой нервных импульсов и вовлечением небольшого числа ДЕ. В этих условиях, накладывая отводящие электроды на кожу над мышцей и используя усилительную аппаратуру, можно на экране осциллографа или с применением чернильной записи на бумаге зарегистрировать одиночные потенциалы действия отдельных Д Е. В случае же значительных напряжений потенциалы действия многих ДЕ алгебраически суммируются и возникает сложная интегрированная кривая записи электрической активности целой мышцы - электромиограмма (ЭМГ).

    Форма ЭМГ отражает характер работы мышцы: при статических усилиях она имеет непрерывный вид, а при динамической работе - вид отдельных пачек импульсов, приуроченных, в основном, к начальному моменту сокращения мышцы и разделенных периодами "электрического молчания". Особенно хорошо ритмичность появления подобных пачек наблюдается у спортсменов при циклической работе.

    У маленьких детей и неадаптированных к такой работе лиц четких периодов отдыха не наблюдается, что отражает недостаточное расслабление мышечных волокон работающей мышцы.

    Чем больше внешняя нагрузка и ста сокращения мышцы, тем выше амплитуда ее ЭМГ. Это связано с увеличением частоты нервных импульсов, вовлечением большего числа ДЕ в мышце и синхронизацией их активности. Современная многоканальная аппаратура позволяет производить одновременную регистрацию ЭМ Г многих мышц на разных каналах. При выполнении спортсменом сложных движений можно видеть на полученных ЭМГ кривых не только характер активности отдельных мышц, но и оценить моменты и порядок их включения или выключения в различные фазы двигательных актов. Записи ЭМГ, полученные в естественных условиях двигательной деятельности, можно передавать к регистрирующей аппаратуре по телефону или радиотелеметрически. Анализ частоты, амплитуды и формы ЭМ Г (например, с помощью специальных компьютерных программ) позволяет получить важную информацию об особенностях техники выполняемого спортивного упражнения и степени ее освоения обследуемым спортсменом.

    Сокращение мышц — это сложный процесс, состоящий из целого ряда этапов. Главными составляющими здесь являются миозин, актин, тропонин, тропомиозин и актомиозин, а также ионы кальция и соединения, которые обеспечивают мышцы энергией. Рассмотрим виды и механизмы мышечного сокращения. Изучим, из каких этапов они состоят и что необходимо для цикличного процесса.

    Мышцы

    Мышцы объединяются в группы, у которых одинаковый механизм мышечных сокращений. По этому же признаку они и разделяются на 3 вида:

    • поперечно-полосатые мышцы тела;
    • поперечно-полосатые мышцы предсердий и сердечных желудочков;
    • гладкие мышцы органов, сосудов и кожи.

    Поперечно-полосатые мышцы входят в опорно-двигательный аппарат, являясь его частью, так как помимо них сюда входят сухожилия, связки, кости. Когда реализуется механизм мышечных сокращений, выполняются следующие задачи и функции:

    • тело передвигается;
    • части тела перемещаются друг относительно друга;
    • тело поддерживается в пространстве;
    • вырабатывается тепло;
    • кора активируется посредством афферентации с рецептивных мышечных полей.

    Из гладких мышц состоит:

    • двигательный аппарат внутренних органов, в который входят легкие и пищеварительная трубка;
    • лимфатическая и кровеносная системы;
    • система мочеполовых органов.

    Физиологические свойства

    Как и у всех позвоночных животных, в человеческом организме выделяют три самых важных свойства волокон скелетных мышц:

    • сократимость — сокращение и изменение напряжения при возбуждении;
    • проводимость — движение потенциала по всему волокну;
    • возбудимость — реагирование на раздражитель посредством изменения мембранного потенциала и ионной проницаемости.

    Мышцы возбуждаются и начинают сокращаться от идущих от центров. Но в искусственных условиях используют тогда может раздражаться напрямую (прямое раздражение) или через нерв, иннервирующий мышцу (непрямое раздражение).

    Виды сокращений

    Механизм мышечных сокращений подразумевает преобразование химической энергии в механическую работу. Этот процесс можно измерить при эксперименте с лягушкой: ее икроножную мышцу нагружают небольшим весом, а затем раздражают легкими электроимпульсами. Сокращение, при котором мышца становится короче, называется изотоническим. При изометрическом сокращении укорачивания не происходит. Сухожилия не позволяют при развитии укорачиваться. Еще один ауксотонический механизм мышечных сокращений предполагает условия интенсивных нагрузок, когда мышца укорачивается минимальным образом, а сила развивается максимальная.

    Структура и иннервация скелетных мышц

    В поперечно-полосатые скелетные мышцы входит множество волокон, находящихся в соединительной ткани и крепящихся к сухожилиям. В одних мышцах волокна расположены параллельно длинной оси, а в других они имеют косой вид, прикрепляясь к центральному тяжу сухожильному и к перистому типу.

    Главная особенность волокна заключается в саркоплазме массы тонких нитей — миофибрилл. В них входят светлые и темные участки, чередующиеся друг с другом, а у соседних поперечно-полосатые волокна находятся на одном уровне — на поперечном сечении. Благодаря этому получается поперечная полосатость по всему волокну мышц.

    Саркомером является комплекс из темного и двух светлых дисков, и он отграничивается Z-образными линиями. Саркомеры — это сократительный аппарат мышцы. Получается, что сократительное мышечное волокно состоит из:

    • сократительного аппарата (системы миофибрилл);
    • трофического аппарата с митохондриями, комплексом Гольджи и слабой ;
    • мембранного аппарата;
    • опорного аппарата;
    • нервного аппарата.

    Разделяется на 5 частей со своими структурами и функциями и является целостной частью ткани мышц.

    Иннервация

    Этот процесс у поперечно-полосатых мышечных волокон реализуется посредством нервных волокон, а именно аксонов мотонейронов спинного мозга и головного ствола. Один мотонейрон иннервирует несколько волокон мышц. Комплекс с мотонейроном и иннервируемыми мышечными волокнами называют нейромоторной (НМЕ), или (ДЕ). Среднее число волокон, которые иннервирует один мотонейрон, характеризует величину ДЕ мышцы, а обратную величину называют плотностью иннервации. Последняя является большой в тех мышцах, где движения небольшие и «тонкие» (глаза, пальцы, язык). Малое ее значение будет, напротив, в мышцах с «грубыми» движениями (например, туловище).

    Иннервация может быть одиночной и множественной. В первом случае она реализуется компактными моторными окончаниями. Обычно это характерно для крупных мотонейронов. Мышечные волокна (называющиеся в этом случае физическими, или быстрыми) генерируют ПД (потенциалы действий), которые распространяются на них.

    Множественная иннервация встречается, к примеру, во внешних глазных мышцах. Здесь не генерируется потенциал действия, так как в мембране нет электровозбудимых натриевых каналов. В них распространяется деполяризация по всему волокну из синаптических окончаний. Это необходимо для того, чтобы привести в действие механизм мышечного сокращения. Процесс здесь происходит не так быстро, как в первом случае. Поэтому его называют медленным.

    Структура миофибрилл

    Исследования мышечного волокна сегодня проводятся на основе рентгеноструктурного анализа, электронной микроскопии, а также гистохимическими методами.

    Рассчитано, что в каждую миофибриллу, диаметр которой составляет 1 мкм, входит примерно 2500 протофибрилл, то есть удлиненных полимеризованных молекул белков (актина и миозина). Актиновые протофибриллы в два раза тоньше миозиновых. В покое эти мышцы находятся так, что актиновые нити кончиками проникают в промежутки между миозиновыми протофибриллами.

    Узкая светлая полоса в диске А свободна от актиновых нитей. А мембрана Z скрепляет их.

    На миозиновых нитях есть поперечные выступы длиной до 20 нм, в головках которых находится порядка 150 молекул миозина. Они отходят биополярно, и каждая головка соединяет миозиновую с актиновой нитью. Когда происходит усилие актиновых центров на нитях миозина, актиновая нить приближается к центру саркомера. В конце миозиновые нити доходят до линии Z. Тогда они занимают собой весь саркомер, а актиновые находятся между ними. При этом длина диска I сокращается, а в конце он исчезает полностью, вместе с чем линия Z становится толще.

    Так, по теории скользящих нитей, объясняется сокращение длины волокна мышцы. Теория, получившая название «зубчатого колеса», была разработана Хаксли и Хансоном в середине двадцатого века.

    Механизм мышечного сокращения волокна

    Главным в теории является то, что не нити (миозиновые и актиновые) укорачиваются. Длина их остается неизменной и при растяжении мышц. Но пучки тонких нитей, проскальзывая, выходят между толстыми нитями, уменьшается степень их перекрытия, таким образом происходит сокращение.

    Молекулярный механизм мышечного сокращения посредством скольжения актиновых нитей заключается в следующем. Миозиновые головки соединяют протофибриллу с актиновой. При их наклонах происходит скольжение, двигающее актиновую нить к центру саркомера. За счет биполярной организации миозиновых молекул на обеих сторонах нитей создаются условия для скольжения актиновых нитей в разные стороны.

    При расслаблении мышц миозиновая головка отходит от актиновых нитей. Благодаря легкому скольжению расслабленные мышцы растяжению сопротивляются гораздо меньше. Поэтому они пассивно удлиняются.

    Этапы сокращения

    Механизм мышечного сокращения кратко можно подразделить на следующие этапы:

    1. Мышечное волокно стимулируется, когда потенциал действия поступает от мотонейронов из синапсов.
    2. Потенциал действия создается на мембране мышечного волокна, а затем распространяется к миофибриллам.
    3. Совершается электромеханическое сопряжение, представляющее собой преобразование электрического ПД в механическое скольжение. В этом обязательно участвуют ионы кальция.

    Ионы кальция

    Для лучшего понимания процесса активации волокна ионами кальция удобно рассмотреть структуру актиновой нити. Длина ее составляет порядка 1 мкм, толщина — от 5 до 7 нм. Это пара закрученных ниток, которые напоминают мономер актина. Примерно через каждые 40 нм здесь находятся сферические тропониновые молекулы, а между цепями — тропомиозиновые.

    Когда ионы кальция отсутствуют, то есть миофибриллы расслабляются, длинные тропомиозиновые молекулы блокируют крепление актиновых цепей и мостиков миозина. Но при активизации ионов кальция тропомиозиновые молекулы опускаются глубже, и участки открываются.

    Тогда миозиновые мостики прикрепляются к актиновым нитям, а АТФ расщепляется, и сила мышц развивается. Это становится возможным за счет воздействия кальция на тропонин. При этом молекула последнего деформируется, проталкивая тем самым тропомиозин.

    Когда мышца расслаблена, в ней на 1 грамм сырого веса содержится больше 1 мкмоль кальция. Соли кальция изолированы и находятся в особых хранилищах. В противном случае мышцы бы все время сокращались.

    Хранение кальция происходит следующим образом. На разных участках мембраны клетки мышцы внутри волокна имеются трубки, через которые происходит соединение со средой вне клеток. Это система поперечных трубочек. А перпендикулярно ей находится система продольных, на концах которых — пузырьки (терминальные цистерны), расположенные в непосредственной близости к мембранам поперечной системы. Вместе получается триада. Именно в пузырьках хранится кальций.

    Так ПД распространяется внутрь клетки, и происходит электромеханическое сопряжение. Возбуждение проникает в волокно, переходит в продольную систему, высвобождает кальций. Таким образом осуществляется механизм сокращения мышечного волокна.

    3 процесса с АТФ

    При взаимодействии обеих нитей при наличии ионов кальция немалая роль отводится АТФ. Когда реализуется механизм мышечного сокращения скелетной мышцы, энергия АТФ применяется для:

    • работы насоса натрия и калия, который поддерживает постоянную концентрацию ионов;
    • этих веществ по разные стороны мембраны;
    • скольжения нитей, укорачивающих миофибриллы;
    • работы насоса кальция, действующего для расслабления.

    АТФ находится в клеточной мембране, нитях миозина и мембранах ретикулума саркоплазматического. Фермент расщепляется и утилизируется миозином.

    Потребление АТФ

    Известно, что миозиновые головки взаимодействуют с актином и содержат элементы для расщепления АТФ. Последняя активизируется актином и миозином при наличии ионов магния. Поэтому расщепление фермента происходит при прикреплении миозиновой головки к актину. При этом чем больше поперечных мостиков, тем скорость расщепления будет выше.

    Механизм АТФ

    После завершения движения молекула АФТ обеспечивает энергией для разделения участвующих в реакции миозина и актина. Миозиновые головки разделяются, АТФ расщепляется до фосфата и АДФ. В конце подсоединяется новая АТФ-молекула, и цикл возобновляется. Таковым является механизм мышечного сокращения и расслабления на молекулярном уровне.

    Активность поперечных мостиков будет продолжаться лишь до тех пор, пока происходит гидролиз АТФ. При блокировке фермента мостики не станут снова прикрепляться.

    С наступлением смерти организма уровень АТФ в клетках падает, и мостики остаются устойчиво прикрепленными к актиновой нити. Так происходит стадия трупного окоченения.

    Ресинтез АТФ

    Ресинтез возможно реализовать двумя путями.

    Посредством ферментативного переноса от креатинфосфата фосфатной группы на АДФ. Так как запасов в клетке креатинфосфата намного больше АТФ, ресинтез реализуется очень быстро. В то же время посредством окисления пировиноградной и молочной кислот ресинтез будет осуществляться медленно.

    АТФ и КФ могут исчезнуть полностью, если ресинтез будет нарушен ядами. Тогда и кальциевый насос прекратит работу, вследствие чего мышца необратимо сократится (то есть настанет контрактура). Таким образом, нарушится механизм мышечного сокращения.

    Физиология процесса

    Подытоживая вышесказанное, отметим, что сокращение волокна мышцы состоит в укорочении миофибрилл в каждом из саркомеров. Нити миозина (толстые) и актина (тонкие) связаны концами в расслабленном состоянии. Но они начинают скользящие движения друг навстречу к другу, когда реализуется механизм мышечного сокращения. Физиология (кратко) объясняет процесс, когда под влиянием миозина выделяется необходимая энергия для преобразования АТФ в АДФ. При этом активность миозина будет реализована лишь при достаточном содержании ионов кальция, накапливающихся в саркоплазматической сети.


    Тонкая структура мышц

    Скелетная мышца позвоночных состоит из нескольких тысяч параллельных мышечных волокон диаметром 10-100 мкм, заключенных в общую оболочку. К каждому мышечному волокну через концевую пластинку присоединено окончание нервного волокна. Мышечное волокно способно к сокращению под действием нервного импульса и представляет собой функциональный элемент мышечной системы. Протяженность волокна может быть равна длине самой мышцы или значительной ее части. Волокна на каждом конце мышцы переходят на сухожилие, которое принимает на себя напряжение при сокращении.

    Мышечное волокно в свою очередь содержит 1000-2000 параллельных мышечных фибрилл (миофибрилл) диаметром около 1 мкм. Весь пучок миофиорилл обтянут мембраной мышечного волокна - плазмалеммой. Плазмалемма, подобно мембранам всех других клеток, состоит из трех слоев белков и липидов общей толщиной около 10 нм и электрически поляризована. Мембранный потенциал достигает 100 мВ. Сверху плазмалемма покрыта тонким слоем коллагеновых нитей, обладающих упругими свойствами.

    В мышечном волокне содержится много ядер, располагающихся вблизи плазмалеммы, и большое количество митохондрий, находящихся между фибриллами. Митохондрии являются центрами образования макроэргических соединений, прежде всего АТФ. Отсюда макроэргические соединения через саркоплазму поступают к фибриллам.

    При микроскопическом исследовании видно, что в скелетных мышечных волокнах правильно чередуются темные и светлые полосы, образуя характерную поперечную полосатость. Поперечная полосатость волокон обусловлена поперечной полосатостью миофибрилл, расположенных строго определенно друг подле друга.

    Применяя метод электронного микроскопировапия и метод рентгеноструктурного анализа, удалось выяснить, что каждая миофибрилла состоит из параллельно лежащих толстых и тонких нитей - протофибрилл, чередующихся строго определенным образом. Дальнейшие исследования позволили установить, что толстые нити образованы молекулами белка миозина, а тонкие молекулами белка актина. Длина миозиновых нитей составляет примерно 1,5 мкм, а актиновых 1 мкм; толщина – соответственно 16 и 5-7 нм.

    В результате чередования толстых и тонких нитей возникает поперечная исчерченность, видимая под микроскопом. Для микроскопической картины поперечнополосатой мышцы характерно чередование плотных анизотропных полос (их называют А-диски) и светлых изотропных полос (I-диски). В А-дисках миозиновые нити образуют гексагональную (шестиугольную) упаковку; именно они обусловливают высокую оптическую плотность дисков. Активные нити прикрепляются с каждой стороны к узкой белковой структуре, так называемой Z-мембране, которая пересекает I-диск. Отрезок миофибрилл, заключенный между двумя Z-мембранами, называется саркомером. В мышечном волокне в том месте, где оба типа протофибрилл накладываются друг на друга, тонких протофибрилл в пучке в 2 раза больше, чем толстых. Тонкие протофибриллы оканчиваются у края Н-зоны – области с более низкой оптической плотностью, находящейся в середине А-диска. В центре А-диска расположена узкая темная полоска, известная под названием линии М. Считают, что эта линия соответствует небольшому утолщению, которое имеется в центре каждой толстой нити.

    Как показали Хэнсон и Леви, актиновые протофибриллы имеют форму двойной спирали, образованную глобулярными молекулами актина. Вся структура напоминает две плотные нитки бус, закрученные одна вокруг другой, где роль одной бусинки играет глобулярная молекула актина. Миозиновые протофибриллы также представляют собой результат агрегации отдельных молекул миозина. До настоящего времени окончательно не выяснено, как происходит соединение молекул миозина в протофибрилле.

    При увеличении до 600000 раз на микрофотографиях продольного среза мышцы можно видеть, что пары толстых и тонких протофибрилл соединены поперечными мостиками. Эти поперечные мостики являются единственным связующим звеном между протофибриллами и обеспечивают структурную целостность мышцы. В дальнейшем в результате применения метода рентгеноструктурного анализа было показано, что мостики образованы отростками миозиновых нитей, расположенных с интервалом 6-7 нм. Мостики соединяют толстую нить с каждой из шести тонких нитей, располагаясь по спирали, витки которой повторяются через каждые 40 нм. В центральной части миозиновых протофибрилл мостики отсутствуют и на электронной микрофотографии этим участкам соответствует «псевдо Н-зона», обладающая более низкой оптической плотностью, чем Н-зона.

    Ферментативные свойства актомиозина. Кальциевый насос

    В.А. Энгельгардтом и М.Н. Любимовой (1939) было сделано очень важное открытие; они показали, что наряду с сократительными свойствами миозин обладает ферментативными свойствами, являясь ферментом аденозинтрифосфатазой, расщепляющей АТФ. В миофибриллах через поперечные мостики миозин образует комплексное соединение с актином. Энергия, выделяющаяся в процессе гидролиза АТФ, непосредственно используется для сокращения актомиозинового комплекса. Ферментативная активность актомиозина примерно в 10 раз выше активности одного миозина.

    Ферментативная активность, а следовательно, и способность к сокращению актомиозинового комплекса сильно зависят от присутствия в среде ионов кальция. Многие ученые считают, что в отсутствие ионов кальция актомиозин вообще не способен расщеплять АТФ и сокращаться. При увеличении концентрации кальция до определенного предела активность актомиозина увеличивается и достигает максимального значения при концентрации кальция, равной концентрации АТФ в среде. Предполагают, что ионы кальция входят в состав активных центров миозина, локализованных в области поперечных мостиков, и только после этого миозин проявляет АТФ-азную активность. Непосредственной причиной, вызывающей расщепление АТФ и сокращение миофибрилл, служит появление свободных ионов кальция в саркоплазме. Так, инъекция раствора, содержащего ионы кальция, в саркоплазму приводит к сокращению мышечного волокна при отсутствии нервного импульса и потенциала действия мышечного волокна. Наконец, с помощью специальных индикаторов кальция было показано, что в момент сокращения волокна происходит увеличение концентрации ионов кальция в саркоплазме.

    Согласно современным представлениям, в клетках функционирует специальный кальциевый насос, работа которого вызывает сокращение и расслабление миофибрилл. Этот насос, по мнению Бендолла, локализован в мембранах саркоплазматического ретикулума (эндоплазматической сети) мышечного волокна. Саркоплазматический ретикулум состоит из поперечно и продольно расположенных в саркоплазме трубочек, цистерн, пузырьков, стенки которых имеют типичное мембранное строение. Поперечная система саркоплазматического ретикулума представляет собой впячивание плазмалеммы, идущие внутрь в виде трубочек и охватывающие каждую фибриллу на уровне соединения А- и I-дисков в мышцах млекопитающих и на уровне Z-мембран у холоднокровных. По поперечным трубочкам саркоплазматического ретикулума возбуждение в виде волны деполяризации передается от поверхности волокна, возбуждаемой нервным импульсом, к миофибриллам.

    Это подтверждается классическим опытом Хаксли с локальным раздражением мышечного волокна лягушки. Микроэлектродом наносили очень слабое подпороговое раздражение на различные участки волокна. Локальное сокращение нескольких миофибрилл возникало только в случае нанесения раздражения на уровне Z-мембран, где локализованы трубочки поперечного саркоплазматического ретикулума. От поперечного ретикулума возбуждение передается расположенному между фибриллами продольному ретикулуму, где локализован кальциевый насос. Предполагается, что в процессе проведения возбуждения по мембранам ретикулума основную роль играют не ионы натрия и калия, а ионы кальция и магния.

    Деполяризация мембран трубочек и пузырьков саркоплазматического ретикулума приводит к освобождению содержащихся в них моном кальция. Механизм освобождения ионов кальция пока не установлен. Возможно, это связано с увеличением проницаемости мембран для ионов кальция при возбуждении и последующей диффузией их по концентрационному градиенту в саркоплазму.

    Появление свободных ионов кальция в саркоплазме приводит к проявлению АТФ-азной активности актомиозина и к сокращению миофибрилл. Для сокращения миофибрилл необходимо также наличие ионов магния, механизм действия которых пока не установлен.

    Процесс расслабления миофибрилл связан с удалением ионов кальция из саркоплазмы, осуществляемым саркоплазматическим ретикулумом. Элементы ретикулума обладают способностью к активному поглощению ионов кальция из окружающего раствора. Препараты саркоплазматического ретикулума, выделенного из мышц путем дифференцированного центрифугирования их гомогенатов, обладают способностью поглощать ионы кальция из раствора. При этом в некоторых случаях концентрация кальция внутри пузырьков и цистерн ретикулума превышала концентрацию кальция в окружающем растворе в 2000 раз. Наличие активного переноса кальция при расслаблении миофибрилл подтверждается и тем, что концентрация кальция в саркоплазме после микроинъекции начинает постепенно уменьшаться, что сопровождается расслаблением миофибрилл. Возможно, как предполагает Бендолл, что обратный перенос кальция связан с самим движением протофибрилл при сокращении, что исключает необходимость наличия специального механизма активного переноса кальция.

    Прежнее представление, согласно которому расслабление вызывается освобождением специфического фактора расслабления - фактора Марша, оказалось ошибочным. Этот фактор выделялся путем экстракции из гомогенатов мышц. Он содержал ферменты, имеющиеся и саркоплазме, и фрагменты ретикулума. Один из этих ферментов и был принят за фактор расслабления, хотя на самом деле расслабляющее действие оказывали фрагменты ретикулума.

    Необходимо отметить, что расслабление миофибрилл при удалении ионов кальция из саркоплазмы происходи только в том случае, если в саркоплазме содержится АТФ. Удаление АТФ из саркоплазмы приводит к возникновению между актином и миозином сильных электростатических связей, что обусловливает окоченение (контрактуру) мышцы и потерю ею способности к растяжению.

    Таким образом, сокращение миофибрилл вызывается расщеплением АТФ в присутствии ионов кальция, а расслабление – поступлением новых молекул АТФ к протофибриллам при отсутствии ионов кальция. Регулятором сокращения и расслабления миофибрилл является поступление ионов кальция в саркоплазму и их удаление в саркоплазматический ретикулум.

    Восстановление первоначальной длины мышцы после сокращения обусловлено, вероятно, наличием упругих элементов в мышечных волокнах и работой мышц антагонистов. Упругими элементами мышечного волокна являются коллагеновая оболочка, покрывающая плазмалемму, и, возможно, саркоплазматический ретикулум. Если с волокна снять сарколемму и заставить его сократиться, то волокно не может расслабиться спонтанно, хотя легко вытягивается до первоначальной длины при действии внешней силы.

    Теории механизма мышечного сокращения

    До получения данных о тонкой структуре мышц процессы мышечного сокращения пытались объяснить деформацией изолированных молекулярных цепей белков, т. е. удлинением или укорочением отдельных белковых молекул или агрегатов молекул. Часто данные о деформации различных полимеров переносили на мышечное сокращение, без учета структуры мышечных волокон.

    Известно много полиэлектролитных полимерных систем, обладающих способностью к изменению длины при изменении химического состава окружающего раствора. Примером такой системы является вытянутая цепочка полиакриловой кислоты. При подкислении раствора такая цепочки сокращается, в щелочной среде она, наоборот, растягивается. Если подвесить к ней груз, то можно получить машину, совершающую механическую работу при изменении рН раствора. Существуют также редокс-модели и ионные модели мышц, в которых факторами сокращения являются соответственно изменения редокс-потенциала и концентрации свободных ионов.

    Во всех этих моделях изменение длины полимеров происходит в основном в результате изменения электростатического взаимодействия между звеньями полимера или между витками спирали и случае спиральных структур.

    Существует множество гипотез, пытающихся объяснить мышечное сокращение на основе свойств индивидуальных молекулярных цепей сократительных белков. Все эти гипотезы исходят из представления, что в основе сокращения мышцы лежат процессы конформационных изменений структуры белковых цепей. Так, Мейер еще в 1929 г. выдвинул гипотезу, согласно которой мышечное сокращение обусловлено деформацией пептидных цепей вследствие изменения электростатического взаимодействия ионогенных групп СООН и NH 2 при изменении рН.

    В настоящее время считают, что изменение рН при возбуждении миофибрилл недостаточно, чтобы вызвать конформационныепереходы белков, по может быть достаточно для освобождения ионов кальция, которые уже могут вызвать деформацию белковой цепи.

    Согласно другому представлению, акт сокращения представляет собой конформационный переход белковой структуры от α-конфигурации, когда нити линейно вытянуты, к β-конфигурации, когда нити собраны в клубок.

    Однако эти гипотезы не смогли объяснить реальную картину сложного строения мышечного волокна на молекулярном уровне, полученную в последнее время. Возможно, что при медленном сокращении гладких мышц происходит фактическая деформация (активное сокращение отдельных протофибрилл) белковых цепей, как считает Г.М.Франк, однако для сокращения скелетных мышц гораздо более обоснованными являются представления, исходящие из гипотезы скольжения нитей.

    Г.Хаксли и Хэнсон выдвинули гипотезу скольжения нитей. Ими было отмечено, что в широком интервале деформаций как при сокращении, так и при растяжении миофибрилл ширина А-диска остается постоянной. Напротив, при изменении длины саркомера изменяется ширина I-диска. Светлая Н–зона в А-диске также изменяется, но замечательно, что до тех пор, пока она существует, расстояние от конца одной Н-зоны через Z-мембрану до начала следующей Н-зоны (а это расстояние равно длине тонких нитей в миофибрилле) также остается постоянным. Если вспомнить, что А-диски образованы нитями миозина, а тонкие нити состоят их актина, то можно заключить, что в большой области деформаций мышцы длина миозиновых и актиновых нитей остается постоянной. Это можно объяснить только тем, что при сокращении мышцы нити просто скользят друг относительно друга без изменения своей длины.

    При сильном сокращении мышцы в середине А-диска появляется плотная зона, причем ширина этой зоны увеличивается по мере сокращения мышцы. Эта плотная зона появляется после полного исчезновения Н-зоны. Уменьшение Н-зоны при сокращении вызывается скольжением тонких нитей навстречу друг другу к центру А-диска. Измерив расстояние от Z-мембраны до противолежащего конца ноной плотной зоны (полосы сокращения), Г. Хаксли и Хчпсоп обнаружили, что оно равно половине длины тонкой протофибриллы. На этом основании они предположили, что новая зона соответствует тому участку саркомера, где концы противолежащих тонких нитей перекрываются друг с другом. Это предположение подтвердилось тем, что на микрофотографии поперечного среза мышцы в области новой плотной зоны было обнаружено в 2 раза больше тонких нитей, чем в остальной области А-диска. Кроме того, при сильном сокращении мышцы, после исчезновения I-диска в области Z-мембран также появляются темные полосы. Это объясняется тем, что миозиновые нити достигают Z-мембран и после этого происходит их деформация.

    В дальнейшем данные электронного микроскопирования были подтверждены результатами рентгеноструктурного анализа. Основные рефлексы рентгенограммы не изменяются при сокращении мышц. Это указывает на то, что длина нитей при сокращении не меняется. Приведенные данные очень важны, так как в отличие от электронно-микроскопических исследований, проводимых на фиксированных препаратах мышц, рентгенографические исследования проводились и на живых сокращающихся мышцах, и на нефиксированных ее препаратах.

    Перемещение тонких нитей относительно толстых происходит, при помощи мостиков, соединяющих миозиновые нити с актиновыми. Так как изменений в длине толстых и топких нитей во время сокращения не происходит, то из модели скольжения нитей вытекает, что конформационные изменения, порождающие движение, должны происходить в указанных мостиках, связывающих толстые и тонкие нити. Весь процесс сокращения имеет циклический характер. Миозиновые мостики прикрепляются к активным участкам актиновых нитей и под действием энергии гидролиза АТФ укорачиваются или изменяют угол наклона к миозиновым нитям, что приводит к определенному перемещению нитей друг относительно друга. Затем происходит отсоединение мостиков в данных участках актиновых нитей и присоединение их в новых участках. Этот циклический процесс повторяется многократно, в результате чего происходит непрерывное перемещение нитей друг относительно друга. Рентгенографические исследования подтвердили предположение о движении мостиков. По мнению Г.Хаксли, расщепление одной молекулы АТФ приводит к одному замыканию и размыканию мостиков и к перемещению нитей на один элементарный участок.

    Величина напряжения, развиваемого мышцей, определяется количеством замыкаемых (функционирующих) мостиков. Если мышца преодолевает при сокращении внешнюю силу, то замыкается такое количество мостиков, которое необходимо для уравновешивания этой силы. Максимальная сила, развиваемая мышцей, определяется количеством мостиков, которые могут замыкаться в данных условиях. Исходя из этих представлений, нетрудно объяснить обратную зависимость напряжения, развиваемого мышцей при сокращении, от скорости сокращения. Для того чтобы мостики замкнулись, необходимо какое-то время. При увеличении скорости скольжения нитей количество замыкаемых мостиков уменьшается, что обусловливает уменьшение напряжения, развиваемого мышцей.

    В зависимости от длины саркомеров длина участков, в которых нити актина и миозина перекрываются друг с другом, будет различной и, следовательно, будет различно количество мостиков, участвующих и создании напряжения, развиваемого мышцей. Учитывая, что максимальная сила миофибриллы определяется количеством функционирующих мостиков, следует ожидать, что максимальная сила изометрического сокращения миофибриллы будет изменяться с изменением длины саркомера. При длине саркомера 3,65 мкм нити актина и миозина уже не накладываются друг на друга и можно ожидать, что волокно не будет способно развивать силу. Под силой сокращения следует понимать разность между общей силой, развиваемой при раздражении мышцей, и упругой восстанавливающей силой, обусловленной эластическими элементами мышцы в случае се растяжения сверх нормальной длины. По мере сближения Z-мембран нити актина все глубже проникают в промежутки между нитями миозина и, наконец, при расстоянии 2,2 мкм все мостики миозиновых нитей приходят в контакт с нитью актина. Если именно эти мостики ответственны за возникновение силы, то следует ожидать, что в диапазоне от положения I до положения II сила будет пропорциональна степени перекрывания нитей. При дальнейшем укорочении волокна число мостиков, которые могут замыкаться, не изменяется и сила должна оставаться постоянной, пока длина саркомера не уменьшится до 2,05 мкм. В этот момент нити актина сходятся своими концами и сила должна убывать вследствие того, что тонкие нити, которые проникли дальше середины А-диска, будут неправильно ориентированы по отношению к миозиновым мостикам. Сила должна постепенно убывать, пока расстояние не достигнет 1,65 мкм, когда концы миозиновых нитей приходят в соприкосновение с Z-мембранами. При дальнейшем сокращении нити миозина должны деформироваться; сила должна убывать быстрее и совсем исчезать, когда актиновые нити доходят до противолежащих Z-мембран.

    Все эти предположения подтвердились экспериментально. Гордоном, А.Хаксли, Юлианом (1966) измерялось напряжение, развиваемое мышечным волокном при изометрическом сокращении, и одновременно методом фазово-контрастной микроскопии регистрировалась длина саркомера.

    Однако, несмотря на большие успехи в изучении механизма мышечного сокращения, все еще окончательно не установлен механизм работы мостиков, в результате которой энергия гидролиза АТФ превращается в механическую работу.

    В настоящее время имеется ряд гипотез, пытающихся объяснить конкретный механизм взаимодействия актиновых и миозиновых нитей.

    Наиболее глубоко разработанной и обоснованной является гипотеза Дэвиса. Согласно этой гипотезе, мостик между миозиновой и актиновой нитями образован полипептидными цепочками конца миозиновой молекулы, скрученными в спираль. В покое мостик вытянут-спираль находится в растянутом состоянии. Это обусловлена электростатическим отталкиванием двух отрицательных зарядов. Один из них находится в фиксированном состоянии у основания мостика, которое обладает АТФ-азной активностью. Другой отрицательный заряд локализован па конце мостика, с которым связана молекула АТФ.

    При возбуждении мышцы саркоплазматический ретикулум освобождает ионы кальция. Они образуют связь между молекулой АТФ, находящейся на конце мостика, и молекулой АДФ, расположенной на актиновой нити, что вызывает нейтрализацию отрицательных зарядов. Электростатическое отталкивание исчезает и растянутая цепочка - мостик - скручивается в α-спираль благодаря образованию водородных связей. Этот процесс представляет собой освобождение потенциальной энергии, запасенной вытянутой полипептидной цепочкой при первоначальном отталкивании зарядов. Укорочение полипептидной цени с образованием α-спирали приводит к двум эффектам. Во-первых, актиновая нить перемещается относительно миозиновой на один шаг; во-вторых, присоединенная молекула АТФ перемещается в область гипотетического АТФ-азного центра. Благодаря соответствующему расположению этого центра и наклону мостиков относительно толстой нити актиновые нити перемещаются в сторону М-линий. После этого АТФ расщепляется на АДФ и минеральный фосфат, что ведет к разрыву связей между актином и миозином. На место молекулы АДФ в миозиновом мостике из саркоплазмы поступает новая молекула АТФ, которая отталкивается отрицательным фиксированным зарядом миозина. В результате этого α-спираль растягивается – мостик удлиняется. Если в саркоплазме в это время имеются свободны ионы кальция, то весь цикл повторяется сначала.

    При этом во взаимодействии участвует уже следующий участок активной нити. Если же ионы кальция к этому времени удалены из саркоплазм, то волокно расслабляется.

    Модель Дэвиса получила ряд дополнений и подверглась модификациям. Бендолл (1970) предполагает, что присоединение ионов кальция в области мостиков приводит к изменению электрического взаимодействия. Нейтрализация отрицательных зарядов и присоединение актина к миозину обусловливают превращение спирали полипептидной цепочки (мостика) молекулы миозина в более беспорядочную, сильно свернутую конформацию но типу перехода «спираль - клубок».

    Такой переход сопровождаемся освобождением потенциальной (свободной) энергии, запасенном и более упорядоченной структуре - спирали.

    Эта энергия частично расходуется на тянущее усилие- перемещение нити актина на один шаг, а частично деградирует в тепло. Изменение конформации мостика одновременно вызывает сближение АТФ с АТФ-азным участком миозина, что вызывает гидролиз АТФ.

    Часть освободившейся энергии рассеивается в виде тепла, а часть ее идет на восстановление спиральной конфигурации мостика, который выпрямляется по мере ресинтеза АТФ или поступления новых молекул АТФ извне. Актомиозиновый комплекс распадается и цикл может повториться, если в системе присутствуют ионы кальция.

    При отсутствии в системе молекул АТФ она будет находиться в состоянии окоченения - молекулы актина будут оставаться присоединенными к связывающим центрам миозина.

    При очень сильных мышечных сокращениях отмечается не только продвижение актиновых нитей, но и укорочение саркомеров в целом.