• Что можно приготовить из кальмаров: быстро и вкусно

    § 114. Обращение обыкновенной дроби в десятичную.

    Обратить обыкновенную дробь в десятичную - это значит найти такую десятичную дробь, которая была бы равна данной обыкновенной дроби. При обращении обыкновенных дробей в десятичные мы встретимся с двумя случаями:

    1) когда обыкновенные дроби могут быть обращены в десятичные точно ;

    2) когда обыкновенные дроби могут быть обращены в десятичные лишь приближённо . Рассмотрим эти случаи последовательно.

    1. Как обратить обыкновенную несократимую дробь в десятичную, или, иными словами, как заменить обыкновенную дробь равной ей десятичной?

    В случае, когда обыкновенные дроби могут быть точно обращены в десятичные, существует два способа такого обращения.

    Вспомним, как заменить одну дробь другой, равной первой, или как перейти от одной дроби к другой, не изменяя величины первой. Этим мы занимались, когда приводили дроби к общему знаменателю (§86). Когда мы приводим дроби к общему знаменателю, то поступаем следующим образом: находим общий знаменатель для данных дробей, вычисляем для каждой дроби дополнительный множитель и потом умножаем числитель и знаменатель каждой дроби на этот множитель.

    Заметив это, возьмём несократимую дробь 3 / 20 и попробуем обратить её в десятичную. Знаменатель данной дроби равен 20, а нужно привести её к другому знаменателю, который изображался бы единицей с нулями. Мы будем искать наименьший из знаменателей, выражающихся единицей с последующими нулями.

    Первый способ обращения обыкновенной дроби в десятичную основан на разложении знаменателя на простые множители.

    Необходимо узнать, на какое число следует умножить 20, чтобы произведение выразилось единицей с нулями. Чтобы это узнать, нужно сначала вспомнить, на какие простые множители разлагаются числа, изображаемые единицей с нулями. Вот эти разложения:

    10 = 2 5,
    100 = 2 2 5 . 5,
    1 000 = 2 2 2 5 5 5,
    10 000 = 2 2 2 2 5 5 5 5.

    Мы видим, что число, изображаемое единицей с нулями, разлагается только на двойки и пятёрки, а иных множителей в разложении нет. Кроме того, двойки и пятёрки входят в разложение в одинаковом числе. И, наконец, число тех и других множителей в отдельности равно числу нулей, стоящих после единицы в изображении данного числа.

    Посмотрим теперь, как разлагается 20 на простые множители: 20 = 2 2 5. Из этого видно, что двоек в разложении числа 20 две, а пятёрок одна. Значит, если к этим множителям мы добавим одну пятёрку, то получим число, изображаемое единицей с нулями. Иными словами, для того, чтобы в знаменателе вместо числа 20 получилось число, изображаемое единицей с нулями, нужно 20 умножить на 5, а чтобы величина дроби не изменилась, нужно умножить на 5 и её числитель, т. е.

    Таким образом, чтобы обратить обыкновенную дробь в десятичную, нужно знаменатель этой обыкновенной дроби разложить на простые множители и затем уравнять в нём число двоек и пятёрок, введя в него (и, конечно, в числитель) недостающие множители в необходимом числе.

    Применим этот вывод к некоторым дробям.

    Обратить в десятичную дробь 3 / 50 . Знаменатель этой дроби разлагается так:

    значит, в нём недостаёт одной двойки. Добавим её:

    Обратить в десятичную дробь 7 / 40 .

    Знаменатель этой дроби разлагается так: 40 = 2 2 2 5, т. е. в нём недостаёт двух пятёрок. Введём их в числитель и знаменатель в качестве множителей:

    Из того, что изложено, нетрудно сделать вывод, какие обыкновенные дроби обращаются точно в десятичные. Совершенно очевидно, что несократимая обыкновенная дробь, знаменатель которой не содержит никаких иных простых множителей, кроме 2 и 5, обращается точно в десятичную. Десятичная дробь, которая получается от обращения некоторой обыкновенной, будет иметь столько десятичных знаков, сколько раз в состав знаменателя обыкновенной дроби после её сокращения входит численно преобладающий множитель 2 или 5.

    Если мы возьмём дробь 9 / 40 , то, во-первых, она обратится в десятичную, потому что в состав её знаменателя входят множители 2 2 2 5, во-вторых, полученная десятичная дробь будет иметь 3 десятичных знака, потому что численно преобладающий множитель 2 входит в разложение три раза. В самом деле:

    Второй способ (посредством деления числителя на знаменатель).

    Пусть требуется обратить в десятичную дробь 3 / 4 . Мы знаем, что 3 / 4 есть частное от деления 3 на 4. Это частное мы можем найти, разделив 3 на 4. Сделаем это:

    Таким образом, 3 / 4 = 0,75.

    Ещё пример: обратить в десятичную дробь 5 / 8 .

    Таким образом, 5 / 8 = 0,625.

    Итак, чтобы обратить обыкновенную дробь в десятичную, достаточно разделить числитель обыкновенной дроби на её знаменатель.

    2. Рассмотрим теперь второй из указанных в начале параграфа случаев, т. е. тот случай, когда обыкновенная дробь не может быть обращена в точную десятичную.

    Обыкновенная несократимая дробь, знаменатель которой содержит какие-либо простые множители, отличные от 2 и 5, не может обратиться точно в десятичную. В самом деле, например, дробь 8 / 15 не может обратиться в десятичную, так как её знаменатель 15 разлагается на два множителя: 3 и 5.

    Мы не можем исключить тройку из знаменателя и не можем подобрать такого целого числа, чтобы после умножения на него данного знаменателя произведение выразилось единицей с нулями.

    В таких случаях можно говорить только о приближённом обращении обыкновенных дробей в десятичные.

    Как это делается? Это делается посредством деления числителя обыкновенной дроби на знаменатель, т. е. в этом случае применяют второй способ обращения обыкновенной дроби в десятичную. Значит, этот способ применяется и при точном обращении и при приближённом.

    Если обыкновенная дробь обращается точно в десятичную, то от деления получается конечная десятичная дробь.

    Если обыкновенная дробь не обращается в точную десятичную, то от деления получается бесконечная десятичная дробь.

    Так как мы не можем выполнить бесконечного процесса деления, то мы должны прекратить деление на каком-нибудь десятичном знаке, т. е. сделать приближённое деление. Мы можем, например, прекратить деление на первом десятичном знаке, т. е. ограничиться десятыми долями; в случае надобности мы можем остановиться на втором десятичном знаке, получив сотые доли, и т. д. В этих случаях говорят, что мы округляем бесконечную десятичную дробь. Округление делается с той точностью, какая при решении данной задачи необходима.

    § 115. Понятие о периодической дроби.

    Бесконечная десятичная дробь, у которой одна или несколько цифр неизменно повторяются в одной и той же последовательности, называется периодической десятичной дробью. Например:

    0,33333333...; 1,12121212...; 3,234234234...

    Совокупность повторяющихся цифр называется периодом этой дроби. Период первой из написанных выше дробей есть 3, период второй дроби 12, период третьей дроби 234. Значит, период может состоять из нескольких цифр - из одной, из двух, из трёх и т. д. Первая совокупность повторяющихся цифр называется первым периодом, вторая совокупность - вторым периодом и т. д., т. е.

    Периодические дроби бывают чистые и смешанные. Периодическая дробь называется чистой, если её период начинается тотчас после запятой. Значит, написанные выше периодические дроби будут чистыми. Напротив, периодическая дробь называется смешанной, если у неё между запятой и первым периодом имеется одна или несколько неповторяющихся цифр, например:

    2,5333333...; 4,1232323232...; 0,2345345345345... 160

    Для сокращения письма можно цифры периода писать один раз в скобках и не ставить после скобок многоточия, т. е. вместо 0,33... можно писать 0,(3); вместо 2,515151... можно писать 2,(51); вместо 0,2333... можно писать 0,2(3); вместо 0,8333... можно писать 0,8(3).

    Читаются периодические дроби так:

    0,(3) - 0 целых, 3 в периоде.

    7,2(3) - 7 целых, 2 до периода, 3 в периоде.

    5,00(17) - 5 целых, два нуля до периода, 17 в периоде.

    Как возникают периодические дроби? Мы уже видели, что при обращении обыкновенных дробей в десятичные может быть два случая.

    Во-первых , знаменатель обыкновенной несократимой дроби не содержит никаких иных множителей, кроме 2 и 5; в этом случае обыкновенная дробь обращается в конечную десятичную.

    Во-вторых, знаменатель обыкновенной несократимой дроби содержит в себе какие-либо простые множители, отличные от 2 и 5; в этом случае обыкновенная дробь не обращается в конечную десятичную. В этом последнем случае при попытке обратить обыкновенную дробь в десятичную посредством деления числителя на знаменатель получается бесконечная дробь, которая всегда будет периодической.

    Чтобы в этом убедиться, рассмотрим какой-нибудь пример. Попробуем обратить дробь- 18 / 7 в десятичную.

    Мы, конечно, заранее знаем, что дробь с таким знаменателем не может обратиться в конечную десятичную, и ведём речь только о приближённом обращении. Разделим числитель 18 на знаменатель 7.

    Мы получили в частном восемь десятичных знаков. Нет надобности продолжать деление дальше, потому что оно всё равно не окончится. Но отсюда понятно, что деление можно продолжать бесконечно долго и, таким образом, получать в частном новые цифры. Эти новые цифры будут возникать потому, что у нас всё время будут получаться остатки; но никакой остаток не может быть больше делителя, который у нас равен 7.

    Посмотрим, какие у нас были остатки: 4; 5; 1; 3; 2; б, т. е. это были числа, меньшие 7. Очевидно, их не может быть больше шести, и при дальнейшем продолжении деления они должны будут повторяться, а вслед за ними будут повторяться и цифры частного. Приведённый выше пример подтверждает эту мысль: десятичные знаки в частном идут в таком порядке: 571428, а после этого снова появились цифры 57. Значит, у нас окончился первый период и начинается второй.

    Таким образом, бесконечная десятичная дробь, получающаяся при обращении обыкновенной дроби, всегда будет периодической.

    Если периодическая дробь встречается при решении какой-нибудь задачи, то она берётся с той точностью, какая требуется условием задачи (до десятой, до сотой, до тысячной и т. д.).

    § 116. Совместные действия с обыкновенными и десятичными дробями.

    При решении различных задач мы встретимся с такими случаями, когда в задачу входят и обыкновенные, и десятичные дроби.

    В этих случаях можно идти различными путями.

    1. Обратить все дроби в десятичные. Это удобно потому, что вычисления над десятичными дробями легче, чем над обыкновенными. Например,

    Обратим дроби 3 / 4 и 1 1 / 5 в десятичные:

    2. Обратить все дроби в обыкновенные. Так чаще всего поступают в тех случаях, когда встречаются обыкновенные дроби, не обращающиеся в конечные десятичные.

    Например,

    Обратим десятичные дроби в обыкновенные:

    3. Вычисления ведут без обращения одних дробей в другие.

    Это особенно удобно в тех случаях, когда в пример входят только умножение и деление. Например,

    Перепишем пример так:

    4. В некоторых случаях обращают все обыкновенные дроби в десятичные (даже те, которые обращаются в периодические) и находят приближённый результат. Например,

    Обратим 2 / 3 в десятичную дробь, ограничившись тысячными долями.

    Помните, как в самом первом уроке про десятичные дроби я говорил, что существуют числовые дроби, не представимые в виде десятичных (см. урок «Десятичные дроби »)? Мы еще учились раскладывать знаменатели дробей на множители, чтобы проверить, нет ли там чисел, отличных от 2 и 5.

    Так вот: я наврал. И сегодня мы научимся переводить абсолютно любую числовую дробь в десятичную. Заодно познакомимся с целым классом дробей с бесконечной значащей частью.

    Периодическая десятичная дробь - это любая десятичная дробь, у которой:

    1. Значащая часть состоит из бесконечного количества цифр;
    2. Через определенные интервалы цифры в значащей части повторяются.

    Набор повторяющихся цифр, из которых состоит значащая часть, называется периодической частью дроби, а количество цифр в этом наборе - периодом дроби. Остальной отрезок значащей части, который не повторяется, называется непериодической частью.

    Поскольку определений много, стоит подробно рассмотреть несколько таких дробей:

    Эта дробь встречается в задачах чаще всего. Непериодическая часть: 0; периодическая часть: 3; длина периода: 1.

    Непериодическая часть: 0,58; периодическая часть: 3; длина периода: снова 1.

    Непериодическая часть: 1; периодическая часть: 54; длина периода: 2.

    Непериодическая часть: 0; периодическая часть: 641025; длина периода: 6. Для удобства повторяющиеся части отделены друг от друга пробелом - в настоящем решении так делать не обязательно.

    Непериодическая часть: 3066; периодическая часть: 6; длина периода: 1.

    Как видите, определение периодической дроби основано на понятии значащей части числа . Поэтому если вы забыли что это такое, рекомендую повторить - см. урок « ».

    Переход к периодической десятичной дроби

    Рассмотрим обыкновенную дробь вида a /b . Разложим ее знаменатель на простые множители. Возможны два варианта:

    1. В разложении присутствуют только множители 2 и 5. Эти дроби легко приводятся к десятичным - см. урок «Десятичные дроби ». Такие нас не интересуют;
    2. В разложении присутствует что-то еще, кроме 2 и 5. В этом случае дробь непредставима в виде десятичной, зато из нее можно сделать периодическую десятичную дробь.

    Чтобы задать периодическую десятичную дробь, надо найти ее периодическую и непериодическую часть. Как? Переведите дробь в неправильную, а затем разделите числитель на знаменатель «уголком».

    При этом будет происходить следующее:

    1. Сначала разделится целая часть , если она есть;
    2. Возможно, будет несколько чисел после десятичной точки;
    3. Через некоторое время цифры начнут повторяться .

    Вот и все! Повторяющиеся цифры после десятичной точки обозначаем периодической частью, а то, что стоит спереди - непериодической.

    Задача. Переведите обыкновенные дроби в периодические десятичные:

    Все дроби без целой части, поэтому просто делим числитель на знаменатель «уголком»:

    Как видим, остатки повторяются. Запишем дробь в «правильном» виде: 1,733 ... = 1,7(3).

    В итоге получается дробь: 0,5833 ... = 0,58(3).

    Записываем в нормальном виде: 4,0909 ... = 4,(09).

    Получаем дробь: 0,4141 ... = 0,(41).

    Переход от периодической десятичной дроби к обыкновенной

    Рассмотрим периодическую десятичную дробь X = abc (a 1 b 1 c 1). Требуется перевести ее в классическую «двухэтажную». Для этого выполним четыре простых шага:

    1. Найдите период дроби, т.е. подсчитайте, сколько цифр находится в периодической части. Пусть это будет число k ;
    2. Найдите значение выражения X · 10 k . Это равносильно сдвигу десятичной точки на полный период вправо - см. урок «Умножение и деление десятичных дробей »;
    3. Из полученного числа надо вычесть исходное выражение. При этом периодическая часть «сжигается», и остается обычная дробь ;
    4. В полученном уравнении найти X . Все десятичные дроби переводим в обыкновенные.

    Задача. Приведите к обыкновенной неправильной дроби числа:

    • 9,(6);
    • 32,(39);
    • 0,30(5);
    • 0,(2475).

    Работаем с первой дробью: X = 9,(6) = 9,666 ...

    В скобках содержится лишь одна цифра, поэтому период k = 1. Далее умножаем эту дробь на 10 k = 10 1 = 10. Имеем:

    10X = 10 · 9,6666 ... = 96,666 ...

    Вычитаем исходную дробь и решаем уравнение:

    10X − X = 96,666 ... − 9,666 ... = 96 − 9 = 87;
    9X = 87;
    X = 87/9 = 29/3.

    Теперь разберемся со второй дробью. Итак, X = 32,(39) = 32,393939 ...

    Период k = 2, поэтому умножаем все на 10 k = 10 2 = 100:

    100X = 100 · 32,393939 ... = 3239,3939 ...

    Снова вычитаем исходную дробь и решаем уравнение:

    100X − X = 3239,3939 ... − 32,3939 ... = 3239 − 32 = 3207;
    99X = 3207;
    X = 3207/99 = 1069/33.

    Приступаем к третьей дроби: X = 0,30(5) = 0,30555 ... Схема та же самая, поэтому я просто приведу выкладки:

    Период k = 1 ⇒ умножаем все на 10 k = 10 1 = 10;

    10X = 10 · 0,30555 ... = 3,05555 ...
    10X − X = 3,0555 ... − 0,305555 ... = 2,75 = 11/4;
    9X = 11/4;
    X = (11/4) : 9 = 11/36.

    Наконец, последняя дробь: X = 0,(2475) = 0,2475 2475 ... Опять же, для удобства периодические части отделены друг от друга пробелами. Имеем:

    k = 4 ⇒ 10 k = 10 4 = 10 000;
    10 000X = 10 000 · 0,2475 2475 = 2475,2475 ...
    10 000X − X = 2475,2475 ... − 0,2475 2475 ... = 2475;
    9999X = 2475;
    X = 2475: 9999 = 25/101.

    Операция деления предполагает участие в ней нескольких основных компонентов. Первый из них - так называемое делимое, то есть число, которое подвергается процедуре деления. Второй - делитель, то есть число, на которое производится деление. Третий - частное, то есть результат операции деления делимого на делитель.

    Результат деления

    Самым простым вариантом результата, который может получиться при использовании в качестве делимого и делителя двух целых положительных чисел, является еще одно целое положительное число. Например, при делении 6 на 2 частное будет равно 3. Такая ситуация возможна, если делимое является делителю, то есть без остатка делится на него.

    Однако существуют и другие варианты, когда осуществить операцию деления без остатка невозможно. В этом случае частным становится нецелое число, которое можно записать в виде комбинации целой и дробной частей. Например, при делении 5 на 2 частное составит 2,5.

    Число в периоде

    Один из вариантов, который может получиться в случае, если делимое не является кратным делителю, представляет собой так называемое число в периоде. Оно может возникнуть в результате деления в том случае, если частное оказывается бесконечно повторяющимся набором цифр. Например, число в периоде может появиться при делении числа 2 на 3. В этой ситуации результат, в виде десятичной дроби, будет выражен в виде комбинации бесконечного количества цифр 6 после запятой.

    Для того чтобы обозначить результат такого деления, был изобретен специальный способ записи чисел в периоде: такое число обозначается помещением повторяющейся цифры в скобки. Например, результат деления 2 на 3 будет записываться с использованием этого способа как 0,(6). Указанный вариант записи применим также в случае, если повторяющейся является только часть числа, получившегося в результате деления.

    Например, при делении 5 на 6 результатом будет периодическое число, имеющее вид 0,8(3). Использование этого способа, во-первых, является наиболее эффективным по сравнению с попыткой записать все или часть цифр числа в периоде, во-вторых, обладает большей точностью в сравнении с другим способом передачи таких чисел - округлением, а кроме того, позволяет отличить числа в периоде от точной десятичной дроби с соответствующим значением при сопоставлении величины этих чисел. Так, например, очевидно, что 0,(6) - существенно больше, чем 0,6.

    Периодическая дробь

    бесконечная десятичная дробь, в которой, начиная с некоторого места, стоит только периодически повторяющаяся определённая группа цифр. Например, 1,3181818...; короче эту дробь записывают так: 1,3(18), то есть помещают период в скобки (и говорят: «18 в периоде»). П. д. называется чистой, если период начинается сразу после запятой, например 2(71) = 2,7171..., и смешанной, если после запятой имеются цифры, предшествующие периоду, например 1,3(18). Роль П. д. в арифметике обусловлена тем, что при представлении рациональных чисел, то есть обыкновенных (простых) дробей, десятичными дробями, всегда получаются либо конечные, либо периодические дроби. Точнее: конечная десятичная дробь получается в том случае, когда знаменатель несократимой простой дроби не содержит других простых множителей, кроме 2 и 5; во всех других случаях получается П. д., и притом чистая, если знаменатель данной несократимой дроби вовсе не содержит множителей 2 и 5, и смешанная, если хотя бы один из этих множителей содержится в знаменателе. Всякая П. д. может быть обращена в простую дробь (то есть она равна некоторому рациональному числу). Чистая П. д. равна простой дроби, числителем которой служит период, а знаменатель изображается цифрой 9, написанной столько раз, сколько цифр в периоде; при обращении в простую дробь смешанной П. д. числителем служит разность между числом, изображаемым цифрами, предшествующими второму периоду, и числом, изображаемым цифрами, предшествующими первому периоду; для составления знаменателя надо написать цифру 9 столько раз, сколько цифр в периоде, и приписать справа столько нулей, сколько цифр до периода. Эти правила предполагают, что данная П. д. правильная, то есть не содержит целых единиц; в противном случае целая часть учитывается особо.

    Известны также правила определения длины периода П. д., соответствующей данной обыкновенной дроби. Например, для дроби a/p , где р - простое число и 1 ≤ a p - 1, длина периода является делителем р - 1. Так, для известных приближений к числу (см. Пи) 22 / 7 и 355 / 113 период равен 6 и 112 соответственно.


    Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

    Синонимы :

    Смотреть что такое "Периодическая дробь" в других словарях:

      Бесконечная десятичная дробь, в которой, начиная с некоторого места, периодически повторяется определенная группа цифр (период), напр. 0,373737... чисто периодическая дробь или 0,253737... смешанная периодическая дробь … Большой Энциклопедический словарь

      Дробь, бесконечная дробь Словарь русских синонимов. периодическая дробь сущ., кол во синонимов: 2 бесконечная дробь (2) … Словарь синонимов

      Десятичная дробь, ряд цифр которой повторяется в одном и том же порядке. Например, 0,135135135… есть п. д., которой период 135 и которая равна простой дроби 135/999 = 5/37. Словарь иностранных слов, вошедших в состав русского языка. Павленков Ф … Словарь иностранных слов русского языка

      Десятичная дробь дробь со знаменателем 10n, где n натуральное число. Имеет особую форму записи: целая часть в десятичной системе счисления, затем запятая и затем дробная часть в десятичной системе счисления, причём количество цифр дробной части … Википедия

      Бесконечная десятичная дробь, в которой, начиная с некоторого места, периодически повторяется определённая группа цифр (период); например, 0,373737... чисто периодическая дробь или 0,253737... смешанная периодическая дробь. * * * ПЕРИОДИЧЕСКАЯ… … Энциклопедический словарь

      Бесконечная десятичная дробь, в к рой, начиная с нек рого места, периодически повторяется определ. группа цифр (период); напр., 0,373737... чисто П. д. или 0,253737... смешанная П. д … Естествознание. Энциклопедический словарь

      См. часть... Словарь русских синонимов и сходных по смыслу выражений. под. ред. Н. Абрамова, М.: Русские словари, 1999. дробь мелочь, часть; дунст, шарик, шрот, картечь; дробное число Словарь русских синонимов … Словарь синонимов

      периодическая десятичная дробь - — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN circulating decimalrecurring decimalperioding decimalperiodic decimalperiodical decimal … Справочник технического переводчика

      Если делится какое нибудь целое число а на другое целое число b, т. е. ищется число x, удовлетворяющее условию bx=а, то могут представиться два случая: или в ряду целых чисел найдется число х, которое этому условию удовлетворит, или же окажется,… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

      Дробь, знаменатель которой есть целая степень числа 10. Д. д. пишут без знаменателя, отделяя в числителе справа запятой столько цифр, сколько нулей содержится в знаменателе. Например, В такой записи часть, стоящая слева… … Большая советская энциклопедия

    Бесконечные десятичные дроби

    Десятичные дроби после запятой могут содержать бесконечное количество цифр.

    Бесконечные десятичные дроби -- это десятичные дроби, в записи которых находится бесконечное число цифр.

    Бесконечную десятичную дробь практически невозможно записать полностью, поэтому при их записи ограничиваются только некоторым конечным количеством цифр после запятой, после чего ставят многоточие, которое указывает на бесконечно продолжающуюся последовательность цифр.

    Пример 1

    Например, $0,443340831\dots ; 3,1415935432\dots ; 135,126730405\dots ; 4,33333333333\dots ; 676,68349349\dots$.

    Рассмотрим последние две бесконечные десятичные дроби. В дроби $4,33333333333\dots$ бесконечно повторяется цифра $3$, а в дроби $676,68349349\dots$ с третьего знака после запятой повторяется группа цифр $3$, $4$ и $9$. Подобные бесконечные десятичные дроби называются периодическими.

    Периодические десятичные дроби

    Периодические десятичные дроби (или периодические дроби ) -- это бесконечные десятичные дроби, в записи которых с некоторого знака после запятой бесконечно повторяется какая-нибудь цифра или их группа, которая называется периодом дроби}.

    Пример 2

    Например, период периодической дроби $4,33333333333\dots$ -- цифра $3$, а период дроби $676,68349349\dots$ -- группа цифр $349$.

    Для краткости записи бесконечных периодических десятичных дробей принято период записывать один раз, заключив его в круглые скобки. Например, периодическую дробь $4,33333333333\dots$ записывают $4,(3)$, а периодическую дробь $676,68349349\dots$ записывают $676,68(349)$.

    Бесконечные десятичные периодические дроби получают при переводе обыкновенных дробей, знаменатели которых содержат простые множители, кроме $2$ и $5$, в десятичные дроби.

    Любая конечная десятичная дробь (и целое число) может быть записана в виде периодической дроби, для чего достаточно справа дописать бесконечное количество цифр $0$.

    Пример 3

    Например, конечная десятичная дробь $45,12$ может быть записана в виде периодической дроби как $45,12(0)$, а целое число $(74)$ в виде бесконечной периодической десятичной дроби будет иметь вид $74(0)$.

    В случае периодических дробей, которые имеют период 9, используют переход к другой записи периодической дроби с периодом $0$. Только для этого период 9заменяют периодом $0$, при этом значение следующего по старшинству разряда увеличивается на $1$.

    Пример 4

    Например, периодическую дробь $7,45(9)$ можно заменить периодической дробью $7,46(0)$ или равной ей десятичной дробью $7,46$.

    Бесконечные десятичные периодические дроби представляются рациональными числами. Другими словами, любая периодическая дробь может быть переведена в обыкновенную дробь, а любая обыкновенная дробь может быть представлена в виде периодической дроби.

    Перевод обыкновенных дробей в конечные и бесконечные периодические десятичные дроби

    В десятичную дробь можно перевести не только обыкновенные дроби со знаменателями $10, 100, \dots$.

    В некоторых случаях исходную обыкновенную дробь можно легко привести к знаменателю $10$, $100$ или $1 \ 000$, после чего можно полученную дробь представить в виде десятичной дроби.

    Пример 5

    Чтобы дробь $\frac{3}{5}$ }привести к дроби со знаменателем $10$, нужно числитель и знаменатель дроби умножить на $2$, после чего получим $\frac{6}{10}$, которую не составит труда перевести в десятичную дробь $0,6$.

    Для остальных случаев используется другой способ перевода обыкновенной дроби в десятичную}:

      числитель нужно заменить десятичной дробью с любым числом нулей после десятичной запятой;

      разделить числитель дроби на знаменатель (деление выполняется как деление натуральных чисел в столбик, а в частном ставят десятичную запятую после окончания деления целой части делимого).

    Пример 6

    Перевести обыкновенную дробь $\frac{621}{4}$ в десятичную дробь.

    Решение.

    Число $621$ в числителе представим в виде десятичной дроби. Для этого добавим десятичную запятую и для начала два нуля после нее. Далее при необходимости можно буде добавить нули еще. Итак, получили $621,00$.

    Выполним деление числа $621,00$ на $4$ в столбик:

    Рисунок 1.

    Деление дошло до десятичной запятой в делимом, а остаток при этом получили не нулевой. В таком случае в частном ставится десятичная запятая и продолжается деление столбиком, не взирая на запятые:

    Рисунок 2.

    В остатке получили нуль, значит деление окончено.

    Ответ : $155,25$.

    Возможен случай, когда при делении числителя и знаменателя обыкновенной дроби в остатке $0$ так и не получается. В этом случае деление можно продолжать бесконечно. Начиная с определенного момента остатки от деления периодически повторяются, а значит повторяются и цифры в частном. Из этого можно сделать вывод, что данная обыкновенная дробь переведется в бесконечную периодическую десятичную дробь.

    Пример 7

    Перевести обыкновенную дробь $\frac{19}{44}$ в десятичную дробь.

    Решение.}

    Для перевода обыкновенной дроби в десятичную выполним деление в столбик:

    Рисунок 3.

    При делении повторяются остатки $8$ и $36$, а в частном также повторяются цифры $1$ и $8$. Итак, исходную обыкновенную дробь $\frac{19}{44}$ перевели в периодическую дробь $\frac{19}{44}=0,43181818\dots =0,43(18)$.

    Ответ: $0,43(18)$.

    Общий вывод о переводе обыкновенных дробей в десятичные:

      если знаменатель можно разложить на простые множители, среди которых будут присутствовать только числа $2$ и $5$, то такую дробь можно перевести в конечную десятичную дробь;

      если кроме чисел $2$ и $5$ в разложении знаменателя присутствуют другие простые числа, то такая дробь переводится в бесконечную десятичную периодическую дробь.